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     The Structure of Intelligence  

 

    The universe is a labyrinth made of labyrinths. Each leads to another.  

    And wherever we cannot go ourselves, we reach with mathematics.  

                                -- Stanislaw Lem, Fiasco  
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0  

Introduction  

0.0 Psychology versus Complex Systems Science  

Over the last century, psychology has become much less of an art and much more of a science. 
Philosophical speculation is out; data collection is in. In many ways this has been a very positive 
trend. Cognitive science (Mandler, 1985) has given us scientific analyses of a variety of 
intelligent behaviors: short-term memory, language processing, vision processing, etc. And 
thanks to molecular psychology (Franklin, 1985), we now have a rudimentary understanding of 
the chemical processes underlying personality and mental illness. However, there is a growing 
feeling -- particularly among non-psychologists (see e.g. Sommerhoff, 1990) -- that, with the 
new emphasis on data collection, something important has been lost. Very little attention is paid 
to the question of how it all fits together. The early psychologists, and the classical philosophers 
of mind, were concerned with the general nature of mentality as much as with the mechanisms 
underlying specific phenomena. But the new, scientific psychology has made disappointingly 
little progress toward the resolution of these more general questions.  

One way to deal with this complaint is to dismiss the questions themselves. After all, one might 
argue, a scientific psychology cannot be expected to deal with fuzzy philosophical questions that 
probably have little empirical significance. It is interesting that behaviorists and cognitive 
scientists tend to be in agreement regarding the question of the overall structure of the mind. 
Behaviorists believe that it is meaningless to speak about the structures and processes underlying 
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behavior -- on any level, general or specific. And many cognitive scientists believe that the mind 
is a hodge-podge of special-case algorithms, pieced together without any overarching structure. 
Marvin Minsky has summarized this position nicely in his Society of Mind (1986).  

It is not a priori absurd to ask for general, philosophical ideas that interlink with experimental 
details. Psychologists tend to become annoyed when their discipline is compared unfavorably 
with physics -- and indeed, the comparisonis unfair. Experimental physicists have many 
advantages over experimental psychologists. But the facts cannot be ignored. Physics talks about 
the properties of baseballs, semiconductors and solar systems, but also about the fundamental 
nature of matter and space, and about the origin of the cosmos. The physics of baseball is much 
more closely connected to experimental data than is the physics of the first three minutes after 
the Big Bang -- but there is a continuum of theory between these two extremes, bound together 
by a common philosophy and a common set of tools.  

It seems that contemporary psychology simply lacks the necessary tools to confront 
comprehensive questions about the nature of mind and behavior. That is why, although many of 
the topics considered in the following pages are classic psychological topics, ideas from the 
psychological literature are used only occasionally. It seems to me that the key to understanding 
the mind lies not in contemporary psychology, but rather in a newly emerging field which I will 
call -- for lack of a better name -- "complex systems science." Here "complex" does not mean 
"complicated", but rather something like "full of diverse, intricate, interacting structures". The 
basic idea is that complex systems are systems which -- like immune systems, ecosystems, 
societies, bodies and minds -- have the capacity to organize themselves. At present, complex 
systems science is not nearly so well developed as psychology, let alone physics. It is not a 
tightly-knit body of theorems, hypotheses, definitions and methods, but rather a loose collection 
of ideas, observations and techniques. Therefore it is not possible to "apply" complex systems 
science to the mind in the same way that one would apply physics or psychology to something. 
But complex systems science is valuable nonetheless. It provides a rudimentary language for 
dealing with those phenomena which are unique to complex, self-organizing systems. And I 
suggest that it is precisely these aspects of mentality which contemporary psychology leaves out.  

     More specifically, the ideas of the following chapters are connected with four  

"complex systems" theories, intuitively and/or in detail. These are: the theory of pattern 
(Goertzel, 1991), algorithmic information theory (Chaitin, 1987), the theory of multiextremal 
optimization (Weisbuch, 1991; Dixon and Szego, 1978; Goertzel, 1989), and the theory of 
automata networks (Derrida, 1987; Weisbuch, 1991).  

     The theory of pattern provides a general yet rigorous way of talking about concepts such as 
structure, intelligence, complexity and mind. But although it is mathematically precise, it is 
extremely abstract. By connecting the theory of pattern with algorithmic information theory one 
turns an abstract mathematical analysis of mind into a concrete, computational analysis of mind. 
This should make clear the limited sense in which the present theory of mind is computational, a 
point which will be elaborated below. Most of the ideas to be presented are not tied to any 
particular model of computation, but they are discussed in terms of Boolean automata for sake of 
concreteness and simplicity.  
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     Pattern and algorithmic complexity give us a rigorous framework for discussing various 
aspects of intelligence. The theory of multiextremaloptimization, which is closely tied to the 
abstract theory of evolution (Kauffman, 1969; Langton, 1988), gives us a way of understanding 
some of the actual processes by which intelligences recognize and manipulating patterns. 
Perception, control, thought and memory may all be understood as multiextremal optimization 
problems; and recent theoretical and computational results about multiextremal optimization may 
be interpreted in this context. And, finally, the theory of automata networks -- discussed in 
Appendix 2 -- gives a context for our general model of mind, which will be called the "master 
network". The master network is not merely a network of simple elements, nor a computer 
program, but rather a network of programs: an automata network. Not much is known about 
automata networks, but it is known that in many circumstances they can "lock in" to complex, 
self-organizing states in which each component program is continually modified by its neighbors 
in a coherent way, and yet does its individual task effectively. This observation greatly increases 
the plausibility of the master network.  

0.1 Mind and Computation  

    The analysis of mind to be given in the following chapters is expressed in computational 
language. It is therefore implicitly assumed that the mind can be understood, to within a high 
degree of accuracy, as a system of interacting algorithms or automata. However, the concept of 
"algorithm" need not be interpreted in a narrow sense. Penrose (1989), following Deutsch 
(1985), has argued on strictly physical grounds that the standard digital computer is probably not 
an adequate model for the brain. Deutsch (1985) has proposed the "quantum computer" as an 
alternative, and he has proved that -- according to the known principles of quantum physics -- the 
quantum computer is capable of simulating any finite physical system to within finite accuracy. 
He has proved that while a quantum computer can do everything an ordinary computer can, it 
cannot compute any functions besides those which an ordinary computer can compute (however, 
quantum computers do have certain unique properties, such as the ability to generate "truly 
random" numbers). Because of Deutsch's theorems, the assertion that brain function is 
computation is not a psychological hypothesis but a physical, mathematical fact. It follows that 
mind, insofar as it reduces to brain, is computational.  

    I suspect that most of the structures and processes of mind are indeed explicable in terms of 
ordinary digital computation. However, I will suggest that the mind has at least one aspect which 
cannot be explained in these terms. Chapter 11, which deals with consciousness, is the only 
chapter which explicitly assumes that the mind has to do with quantum computation rather than 
simply digital computation.  

    Many people are deeply skeptical of the idea that the mind can be understood in terms of 
computation. And this is understandable. The brain is the only example of intelligence that we 
know, and it doesn't look like it's executingalgorithms: it is a largely incomprehensible mass of 
self-organizing electrochemical processes. However, assuming that these electrochemical 
processes obey the laws of quantum physics, they can be explained in terms of a system of 
differential equations derived from quantum theory. And any such system of differential 
equations may be approximated, to within any desired degree of accuracy, by a function that is 
computable on a quantum computer. Therefore, those who claim that the human mind cannot be 
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understood in terms of computation are either 1) denying that the laws of quantum physics, or 
any similar mathematical laws, apply to the brain; or 2) denying that any degree of understanding 
of the brain will yield an understanding of the human mind. To me, neither of these alternatives 
seems reasonable.  

    Actually, there is a little more to the matter than this simple analysis admits. Quantum physics 
is not a comprehensive theory of the universe. It seems to be able to deal with everything except 
gravitation, for which the General Theory of Relativity is required. In fact, quantum theory and 
general relativity are in contradiction on several crucial points. The effect of gravity on processes 
occurring within individual organisms is small and easily accounted for, so these contradictions 
would seem to be irrelevant to the present considerations. But some scientists -- for instance, 
Roger Penrose, in his The Emperor's New Mind (1989) -- believe that the combination of 
quantum physics with general relativity will yield an entirely new understanding of the physics 
of the brain.  

    It is worth asking: if Penrose were right, what effect would this have on the present 
considerations? Quantum theory and general relativity would be superseded by a new Grand 
Unified Theory, or GUT. But presumably it would then be possible to define a GUT computer, 
which would be capable of approximating any system with arbitrary accuracy according to the 
GUT. Logically, the GUT computer would have to reduce to a quantum computer in those 
situations for which general relativistic and other non-quantum effects are negligible. It would 
probably have all the capacities of the quantum computer, and then some. And in this case, 
virtually none of the arguments given here would be affected by the replacement of quantum 
physics with the GUT.  

    To repeat: the assumption that brain processes are computation, if interpreted correctly, is not 
at all dubious. It is not a metaphor, an analogy, or a tentative hypothesis. It is a physical, 
mathematical fact. If one assumes -- as will be done explicitly in Chapter 4 -- that each mind is 
associated with the structure of a certain physical system, then the fact that a sufficiently 
powerful computer can approximate any physical system with arbitrary precision guarantees that 
any mind can be modeled by a computer with arbitrary precision. Whether this is a useful way to 
look at the mind is another question; but the validity of the computational approach to mind is 
not open to serious scientific dispute.  

0.2 Synopsis  

    Since the arguments to follow are somewhat unorthodox, it seems best to statethe main goals 
in advance:  

1) To give a precise, general mathematical definition of intelligence which is "objective" in that 
it does not refer to any particular culture, species, etc.,  

2) To outline a set of principles by which a machine (a quantum computer, not necessarily a 
Turing machine) fulfilling this definition could be constructed, given appropriate technology,  
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3) To put forth the hypothesis that these same principles are a crucial part of the structure of any 
intelligent system,  

4) To elucidate the nature of and relationships between the concepts involved in these principles: 
induction, deduction, analogy, memory, perception, motor control, optimization, consciousness, 
emotion,....  

    The line of argument leading up to these four goals is as follows. Chapters  

1 through 4 lay the conceptual foundations for the remainder of the book. Basic mathematical 
concepts are reviewed: of Turing machines, algorithmic information pattern, and aspects of 

randomness and optimization. This theoretical framework is used to obtain precise definitions of 
"intelligence", "complexity", "structure", "emergence," and other crucial ideas.  

    For instance, the structure of an entity is defined as the set of all patterns in that entity; and the 
structural complexity of an entity is defined as (roughly speaking) the total algorithmic 
complexity of all the patterns comprising the structure of that entity. The concept of 

unpredictability is analyzed according to the theory of pattern, and intelligence is defined as the 
ability to optimize complex functions of unpredictable environments.  

    In Chapters 5 through 8, the framework erected in the previous chapters is applied to what 
Peirce called the three fundamental forms of logic: induction, deduction and analogy. Each of the 
forms is characterized and explored in terms of algorithmic information theory and the theory of 

pattern. Induction is defined as the construction, based on the patterns recognized in the past, of a 
coherent model of the future. It is pointed out that induction cannot be effective without a 

reliable pattern recognition method to provide it with data, and that induction is a necessary 
component of pattern recognition and motor control.  

    Analogy is characterized, roughly, as reasoning of the form "where one similarity has been 
found, look for more". Three highly general forms of analogy are isolated, analyzed in terms of 
the theory of pattern, and, finally, synthesized into a general framework which is philosophically 
similar to Gentner's (1983) "structure-mapping" theory of analogy. Edelman's theory of Neural 

Darwinism is used to show that the brain reasons analogically.  

    The structure of long-term memory is analyzed as a corollary of the nature of analogical 
reasoning, yielding the concept of a structurally associative memory -- a memory which stores 
each entity near other entities with similar structures, and continually self-organizes itself so as 

to maintain this structure.  

    Finally, deduction is analyzed as a process which can only be useful to intelligence insofar as 
it proceeds according to an axiom system which is amenable to analogical reasoning. This 
analysis is introduced in the context of mathematical deduction, and then made precise and 

general with the help of the theory of pattern.  

    Chapters 9 and 10 deal with the perceptual-motor hierarchy, the network of pattern-
recognition processes through which an intelligence builds a model of the world. This process 
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makes essential use of the three forms of reasoning discussed in the previous chapters; and it is 
also extremely dependent on concepts from the theory of multiextremal optimization.  

    The perceptual hierarchy is, it is proposed, composed of a number of levels, each one 
recognizing patterns in the output of the level below it. This pattern recognition is executed by 
applying an approximation to Bayes' rule from elementary probability theory, which cannot be 
effective without aid from induction and deduction. The activity of the various levels is regulated 

according to a "multilevel methodology" (Goertzel, 1989) which integrates top-down and 
bottom-up control. Neurological data supports this general picture, and recent computer vision 

systems based on miniature "perceptual hierarchies" have been very effective.  

    The motor control hierarchy is closely linked with the perceptual hierarchy and operates 
somewhat similarly, the difference being that its task is not to recognize patterns but rather to 
select the actions which best fulfill the criteria assigned to it. Building on the brain model given 

in Chapter 6, specific model for the brain's perceptual-motor hierarchy is proposed.  

    Chapter 11 deals with consciousness and emotion -- the two essential aspects of the 
construction of the subjective, interior world. Consciousness is analyzed as a process residing on 

the higher levels of the perceptual hierarchy, a process whose function is to make definite 
choices from among various possibilities. It is suggested that complex coordination of the 

perceptual hierarchy and the motor control hierarchy may not be possible in the absence of 
consciousness. And, following Goswami (1990) and others, it is argued that an ordinary 

computer can never be conscious -- but that if a computer is built with small enough parts packed 
closely enough together, it automatically ceases to function as a Turing machine and becomes 

fundamentally a "quantum computer" with the potential for consciousness. The problem of 
reconciling this quantum theory of consciousness with the psychological and biological 

conceptions of consciousness is discussed.  

    Following Paulhan (1887) and Mandler (1985), emotion is characterized as something which 
occurs when expectations are not fulfilled. It is argued that human emotion has a "hot" and a 

"cold" aspect, and that whereas the "cold" aspect is a structure that may be understood in terms 
of digital computation, the "hot" aspect is a peculiar chemical process that is closely related to 

consciousness.  

    Finally, Chapter 12 presents the theory of the master network: a network ofautomata which 
achieves intelligence by the integration of induction, deduction, analogy, memory, perception, 

control, consciousness and emotion. It is pointed out that, according to the definition of 
intelligence given in Chapter 4, a sufficiently large master network will inevitably be intelligent. 

And it is also observed that, if one is permitted to postulate a "sufficiently large" network, nearly 
all of the structure of the master network is superfluous: intelligence can be achieved, albeit far 
less efficiently, by a much simpler structure. Finally, it is suggested that, in order to make sense 
of this observation, one must bring physics into the picture. It is not physically possible to build 

an arbitrarily large network that functions fast enough to survive in reality, because special 
relativity places restrictions on the speed of information transmission and quantum theory places 

restrictions on the minimum space required to store a given amount of information. These 
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restrictions give rise to the hypothesis that it is not physically possible to build an intelligent 
machine which lacks any one of the main components of the master network.  

    It must be emphasized that these various processes and structures, though they are analyzed in 
separate chapters here, need not be physically separate in the body of any given intelligence. For 

one thing, they are intricately independent in function, so why not in implementation? And, 
furthermore, it seems unlikely that they are physically separate in the human brain. In the final 
section, I give a demonstration of how one may design an intelligent machine by combining the 

theory of the master network with Edelman's Neural Darwinism. In this demonstration, the 
various components of the master network are bound together according to an implementation-

specific logic.  

    Finally, it must also be emphasized that the master network is not a physical structure but a 
pattern, an abstract logical structure -- a pattern according to which, or so I claim, the system of 
patterns underlying intelligent behavior tends to organize itself. It consists of two large networks 
of algorithms (the structurally associative memory and the perceptual-motor hierarchy), three 

complex processes for transmitting information from one network to another (induction, 
deduction, analogy), and an array of special-purpose auxiliary optimization algorithms. Each of 
these networks, processes and algorithms may be realized in a variety of different ways -- but 

each has its own distinctive structure, and the interconnection of the five also has it own 
distinctive structure. Of course, an intelligence may also possess a variety of other structures -- 

unrelated structures, or structures intricately intertwined with those described here. My 
hypothesis is only that the presence of the master network in the structure of an entity is a 

necessary and sufficient condition for that entity to be intelligent.  

0.3 Mathematics, Philosophy, Science  

    A scientific theory must be testable. A test can never prove a theory true, and since all but the 
simplest theories can be endlessly modified, a test canrarely prove a complex theory false. But, at 

very least, a test can indicate whether a theory is sensible or not.  

    I am sorry to say that I have not been able to design a "crucial experiment" -- a practical test 
that would determine, all at once, whether the theory of the master network is sensible or not. 
The situation is rather similar to that found in evolutionary biology. There is no quick and easy 

way to test the theory of evolution by natural selection. But there are numerous pieces of 
evidence, widely varying in nature, reliability and relevance. How to combine and weight these 

various pieces of evidence is a matter of intuition and personal bias.  

    I certainly do not mean to imply that the theory of the master network is as well supported as 
the theory of evolution by natural selection -- far from it. But it is not implausible that, in the 
near future, various sorts of evidence might combine to form a fairly convincing case for the 

theory. In this sense, I think the ideas proposed here are testable. Whether there will ever be a 
more effective way to test hypotheses about self-organizing systems such as minds and 

ecosystems is anybody's guess.  
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1  

Mind and Computation  

1.0 Rules  

    What does it mean to tell someone exactly what to do?  

    Sixty years ago no one could give this query a plausible response. Now, however, we have a 
generally accepted definition: a set of instructions is exact if some computer can follow them. 
We have a word, algorithm, which is intended to refer to a completely exact set of instructions. 
This is impressively elegant. But there's a catch -- this approach is meaningful only in the context 
of a theory explaining exactly what a computer is. And it turns out that this problem is not so 
straightforward as it might seem.  

    Note that one cannot say "a set of instructions is exact if every computer can follow them." 
Obviously, computers come in different sizes and forms. Some are very small, with little 
memory or processing power. Some, like the computer chips installed in certain televisions and 
cars, are dedicated to one or two specific purposes. If there were little or nothing in common 
between the various types of computers, computer science would not deserve the label "science." 
But it seems that many computers are so powerful that they can simulate any other computer. 
This is what makes theoretical computer science possible. Computers of this sort are called 
"universal computers," and were first discussed by Alan Turing.  

    What is now called the Turing machine is the simple device consisting of:  

    1) a processing unit which computes according to some formula of Boolean algebra  

    2) a very long tape divided into squares, each square of which is marked either zero or one  

    3) a tape head which can move, read from and write to the tape                    

For instance, the processing unit might contain instructions like:  

        If the tape reads D and -A+(B-C)(D+E)=(R-J), then move tape to the left, call what is read 
C, move the tape two to the right,  

        and write (D-B)C on the tape.  

The Boolean formula in the processing unit is the "program" of the Turing machine: it tells it 
what to do. Different programs lead to different behaviors.  

    Assuming that the tape head cannot move arbitrarily fast, it is clear that any specific program, 
running for a finite time, can only deal with a finite section of the two tapes. But theoretically, 
the tapes must be allowed to be as long as any program will require. Thus one often refers to an 
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"infinitely long" tape, even though no particular program will ever require an infinitely long tape 
in any particular situation.  

    At first, Turing's colleagues were highly skeptical of his contention that this simple machine 
was capable of executing any exact sequence of instructions. But they were soon convinced that 
the behavior of any conceivable computer could be simulated by some Turing machine, and 
furthermore that any precise mathematical procedure could be carried out by some Turing 
machine. To remove all doubt, Turing proved that a certain type of Turing machine, now called a 
"universal Turing machine", was capable of simulating any other Turing machine. One merely 
had to feed the universal Turing machine a number encoding the properties of Turing machine X, 
and then it would act indistinguishably from Turing machine X.  

PUT THE CUP ON THE TABLE  

    Most people who have studied the literature would concur: no one has been able to come up 
with a set of instructions which is obviously precise and yet cannot be programmed on a Turing 
machine. However, agreement is not quite universal. For instance, the philosopher Hubert 
Dreyfus (1978) has written extensively about the inability of existing computers to see, move 
around, or make practical decisions in the real world. From his point of view, it is revealing to 
observe that, say, no Turing machine can follow the instruction: put the cup on the table.  

    The problem is not, of course, that a Turing machine doesn't have any way to pick up a cup. 
One could easily connect a robot arm to a computer in such a way that the output of the 
computer determined the motions of the robot. This is the state of the art in Japanese factory 
design. And even if current technology were not up to the task, the fact that it could be done 
would be enough to vindicate Turing's claim.  

    But could it, actually, be done? What is really involved here? When I tell someone to "put the 
cup on the table," I am really telling them "figure out what I am talking about when I say 'the 
cup' and 'the table' and 'on', and then put the cup on the table." Even if we give a computer a 
robot eye, it is not easy to tell it how to locate a cup lying in the middle of a messy floor. And it 
is evenharder to tell a computer how to distinguish a cup from a bowl. In fact, it is hard to tell a 
person how to distinguish a cup from a bowl. This is a matter of culture and language. We 
simply learn it from experience.  

    One might take all this as proof that "put the cup on the table" is not actually a precise 
instruction. Or, on the other hand, one might maintain that a Turing machine, provided with the 
proper program, could indeed follow the instruction.     But there is an element of circular 
reasoning in the first alternative. "Put the cup on the table" is very precise to many people in 
many situations. To say that it is not precise because a Turing machine cannot understand it is to 
define  precision in terms of the Turing machine, in contradiction to common sense.     And the 
second alternative presupposes a great deal of faith in the future of artificial intelligence. The 
hypothesis that the Turing machine can simulate any computer and execute any set of precise 
mathematical instructions is very well established. But the hypothesis that the Turing machine 
can execute any set of precise instructions is a little shakier, since it is not quite clear what 
"precision" is supposed to mean.  
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    In sum: there is still plenty of room for philosophical debate about the meaning of the Turing 
machine. In the Introduction I mentioned Deutsch's result that according to quantum theory any 
finite physical system can be simulated by a quantum computer. Coupled with the fact that a 
quantum computer cannot compute any functions besides those which a Turing machine can 
compute, this would seem to provide a fairly strong argument in favor of Turing's hypothesis. 
But, of course, physics can never truly settle a philosophical question.  

BRAIN AS TURING MACHINE  

    In a paper of legendary difficulty, McCulloch and Pitts (1943) attempted to demonstrate that 
the human brain is a universal Turing machine. Toward this end, they adopted a greatly 
oversimplified model of the brain, ignoring the intricacies of neurochemistry, perception, 
localization, and the like. The McCulloch-Pitts brain is a network of dots and lines, each dot 
standing for a neuron and each line standing for a connection between neurons. It changes in 
discrete jumps: time 0, then time 1, then time 2, and so on. Each neuron operates according to 
"threshold logic": when the amount of charge contained in it exceeds a certain threshold T, it 
sends all its charge out to the neurons it is connected to. What McCulloch and Pitts proved is that 
a universal Turing machine can be constructed using a neural network of this sort instead of a 
program.  

Some neuroscientists have protested that this sort of "neural network" has nothing to do with the 
brain. However, this is simply not the case. It is clear that the network captures one of the most 
prominent structures of the brain. Precisely what role this structure plays in the brain's activity 
remains to be seen. But it is interesting to see how tremendously powerful this one structure is, 
all by itself.  

    As mentioned above, there have been numerous efforts to form biologically realistic neural 
network models. One approach which has been taken is to introduce random errors into various 
types of simulated neural networks. This idea has led to a valuable optimization technique called 
"simulated annealing" (Aarts et al 1987), to be considered below.  

1.1 Stochastic and Quantum Computation  

    When noise is added to the McCullough-Pitts network, it is no longer a Turing machine. It is a 
stochastic computer -- a computer which involves chance as well as the precise following of 
instructions. The error-ridden neural network is merely one type of stochastic computer. Every 
real computer is a stochastic computer, in the sense that it is subject to random errors. In some 
situations, randomness is a nuisance; one hopes it will not interfere too much with computation. 
But in other situations, chance may be an essential part of computation. Many Turing machine 
algorithms, such as Monte Carlo methods in numerical analysis, use various mathematical ruses 
to simulate stochasticity.  

As I will argue later, one may view randomness in the neural network as a blessing in disguise. 
After all, one might well wonder: if the brain is a computer, then where do new ideas come 
from? A deterministic function only rearranges its input. Is it not possible that innovation 
involves an element of chance?  
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    One may define a stochastic Turing machine as a computer identical to a Turing machine 
except that its program may contain references to chance. Forinstance, its processing unit might 
contain commands like:  

      

        If the tape reads D and -A+(B-C)(D+E)=(R-J), then move tape to the         left with 
probability 50% and move it to the right with probability 50%,         call what is read C, move the 
tape two to the right, write (D-B)Con the         tape with probability 25% and write C on the tape 
with probability 75%.  

One may construct a theory of stochastic Turing machines parallel to the ordinary theory of 
computation. We have seen that a universal Turing machine can follow any precise set of 
instructions, at least in the sense that it can simulate any other computer. Similarly, it can be 
shown that there is a universal stochastic Turing machine which can simulate any precise set of 
instructions involving chance operations.  

QUANTUM COMPUTATION  

    If the universe were fundamentally deterministic, the theory of stochastic computation would 
be superfluous, because there could never really be a stochastic computer, and any apparent 
randomness we perceived would be a consequence of deterministic dynamics. But it seems that 
the universe is not in fact deterministic. Quantum physics tells us that chance plays a major role 
in the evolution of the physical world. This leads us to the question: what kind of computer can 
simulate any physical system? What kind of computer can follow any precise set of physical 
instructions?  

    It turns out that neither a Turing machine nor a stochastic Turing machine has this property. 
This puts the theory of computation in a very uncomfortable situation. After all, the human brain 
is a physical system, and if computers cannot simulate any physical system, there is no reason to 
simply assume that they can simulate the human brain. Perhaps they can, but there is no reason 
to believe it. Clearly it would be desirable to design a computer which could simulate an 
arbitrary physical system. Then we would have a much better claim to be talking about 
computation in general.  

    As mentioned above, D. Deutsch (1985) has taken a large step toward providing such a 
computer. He has described the quantum Turing machine , which according to the laws of 
quantum physics can simulate the behavior of any finite physical system within an arbitrarily 
small degree of error. It can simulate any Turing machine, and any stochastic Turing machine, 
with perfect accuracy. Of course, the rules of quantum physics may be revised any day now; 
there are a number of pressing problems. But Deutsch's idea is a major advance.  

    There is much more to be said on the topic of quantum computation. But for now, let us 
merely observe that the question "what is a computer?" is hardly resolved. It may never be. 
Various abstract models may shed light on differentissues, but they are never final answers. In 
the last analysis, "precise instructions" is just as elusive a concept as "intelligence" or "mind."  
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1.2 Computational Complexity  

    Computational complexity theory, also called algorithmic complexity theory, seeks to answer 
two different kinds of questions: "How hard is this problem?", and "How effective is this 
algorithm at solving this problem?". A number of difficult issues are involved here, and it is not 
possible to delve into them deeply without sophisticated mathematics. Here we shall only scratch 
the surface.  

    Questions of computational complexity are only meaningful in the context of a general theory 
of computation. Otherwise one can only ask "How hard is this problem for this computer?", or 
"How hard is this problem for this particular person?". What lets us ask "How hard is this 
problem?", without any reference to who is actually solving the problem, is a theory which tells 
us that problems are basically just as hard for one computer as for another. Here as in so many 
other cases, it is theory which tells us what questions to ask.  

    According to the theory of Turing machines, any sufficiently powerful computer can simulate 
any other computer. And this is not merely a theoretical illusion. In practice, computers such as 
PCs, mainframes and supercomputers are highly flexible. An IBM PC could be programmed to 
act just like a MacIntosh; in fact, there are software packages which do something very close to 
this. Similarly, a MacIntosh could be programmed to act just like an IBM. Turing proved that 
there is a program which tells a computer, given appropriate information, how to simulate any 
other computer. Therefore, any computer which is powerful enough to run this program can act 
as a universal Turing machine. If it is equipped with enough memory capacity -- e.g. enough disk 
drives -- it can impersonate any computer whatsoever.  

    True, this universal simulation program is very complex. But if a problem is sufficiently 
difficult enough, this doesn't matter. Consider the problem of sorting a list of numbers into 
increasing order. Suppose computer A is capable of solving this problem very fast. Then 
computer B, if it is sufficiently powerful, can solve the problem by simulating computer A. If the 
problem is sorting the list {2,1,3}, then this would be a tremendous effort, because simulating A 
is vastly more difficult than sorting the list {2,1,3}. But if the list in question is a billion numbers 
long, then it's a different story. The point is that lists of numbers can get as long as you like, but 
the complexity of simulating another computer remains the same.  

    Let us make this example more precise. Assume that both A and B have an unlimited supply 
of disk drives -- an infinite memory tape -- at their disposal. Suppose that the program for 
simulating computer A is so slow that it takes computer B 10 time steps to simulate one of 
computer A's time steps. Supposealso that computer A is capable of sorting a list of n numbers in 
n2 time steps. That is, it can sort 10 numbers in 100 time steps, 100 numbers in 10000 time steps, 
and so on. Assume that computer B is not quite so bright, and it has a sorting program built into 
its hardware which takes n3 time steps to sort a list of n numbers.  

    Then, if B were given a list of 3 numbers, its hardware could sort it in 33=27 time steps. If it 
tried to sort it by simulating A, it would take 10(32)=90 time steps. Clearly, it should rely on its 
built-in hardware. But if B were given a list of 10 numbers, it would take 103=1000 steps to sort 
it. If it tried to sort the list by simulating A, it would take 10(102) time steps -- exactly the same 
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amount of time. And if B were given a list of 1000 numbers, it would take 10003=1,000,000,000 
steps to sort it using its hardware, and only 10(10002) =10,000,000 steps to sort it by simulating 
A. The longer the list is, the more useful is the capacity for simulation, and the less useful is the 
built-in hardware.  

    The point is that as the size of the problem, n, gets bigger and bigger, the differences between 
computers become irrelevant. It is worth being a little more rigorous about this. Take any type of 
problem, and assign to each instance of it a "size" n. For example, if the problem is sorting lists 
of numbers, then each instance is a list of numbers, and its size is its length. Let A(n) denote the 
longest amount of time which computer A requires to solve any problem instance of size n. Let 
B(n) denote the longest amount of time which computer B requires to solve any problem 
instance of size n. Assume that the time required to solve an instance of the problem increases as 
n increases (just as the time required to sort a list of n numbers increases as n increases). Then it 
follows that the bigger n gets, the less significant is the difference between A(n) and B(n). 
Mathematically, we say that as n goes to infinity, the ratio A(n)/B(n) goes to 1.  

    All this follows from the assumption that any sufficiently powerful computer can simulate any 
other one, by running a certain "universal Turing machine" program of large but fixed size.  

AVERAGE-CASE ANALYSIS  

Note that the quantity A(n) is defined in terms of "worst-case" computation. It is the longest that 
computer A takes to solve any problem instance of size n. Any computer worth its salt can sort 
the list {1,2,3,4,5,6,7,8,9,10} faster than the list {5,7,6,4,10,3,8,9,2,1}. But A(n) ignores the easy 
cases. Out of all the possible instances, it only asks: how hard is the hardest?  

    For some applications, this is a useful way to look at computation. But not always. To see 
why, consider the following well-known problem. A salesman, driving a jeep, must visit a 
number of cities in the desert. There are no mountains, rivers or other obstructions in the region. 
He wants to know what is the shortest route that goes through all the different cities. This is 
known as the Traveling Salesman Problem. Each specific instance of the problem isparticular 
collection of cities or, mathematically speaking, a set of points in the plane. The size of an 
instance of the problem, n, is simply the number of cities involved.  

    How hard is this problem? When the data is presented pictorially, human beings can solve it 
pretty well. However, we must remember that even if Maria is exceptionally good at solving the 
problem, what Maria(n) measures is the longest it takes Maria to arrive at the correct solution for 
any collection of n cities. No human being does well according to this strict criterion. We do not 
always see the absolute shortest path between the n cities; we often identify a route which is 
close to correct, but not quite there. And we sometimes miss the mark entirely. So we are not 
very good at solving the Traveling Salesman Problem, in the sense that there are instances of the 
problem for which we get the answer wrong or take a long time to get to the answer. But we are  
good at it in the sense that most of the time we get reasonably close to the right answer, pretty 
fast. There are two different notions of proficiency involved here.  
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     The simplest way to solve the Traveling Salesman problem is to list all the possible paths 
between the cities, then compare all the lengths to see which one is the shortest. The problem is 
that there are just too many paths. For instance, if there are 5 cities, then there are [4x3x2]/2 = 12 
paths. If there are 10 cities, then there are [9x8x7x6x5x4x3x2]/2 = 181440 paths. If there are, 
say, 80 cities, then there are more paths than there are electrons in the universe. Using this 
method, the number of steps required to solve the Traveling Salesman problem increases very 
fast as the size of the problem increases. So, given a large Traveling Salesman problem, it might 
be better to apply erratic human intuition than to use a computer to investigate every possible 
path.  

    Let's consider a simple analogy. Suppose you run a bank, and you have three loan officers 
working for you. Officer A is very methodic and meticulous. He investigates every case with the 
precision of a master detective, and he never makes a mistake. He never loans anyone more than 
they can afford. Everyone he approves pays back their loans, and everyone he turns down for a 
loan would not have paid it back anyway. The only problem is that he often takes a long time to 
determine his answer. Officer B, on the other hand, works entirely by intuition. He simply looks 
a person over, talks to them about golf or music or the weather, and then makes his decision on 
the spot. He rejects a some people who deserve loans, and he gives some people more or less 
money than they can afford to pay back. He gives loans to a few questionable characters who 
have neither the ability nor the inclination to pay the bank back.  

    Suppose that, although you really need both, you have been ordered to cut back expenses by 
firing one of your loan officers. Which one should go? At first you might think "Officer B, of 
course." But what if you have a lot ofmoney to lend, and a great many people demanding loans? 
Then A might be a poor choice -- after all, B will serve a lot more customers each month. Even 
though there are some cases where A is much better than B, and there are many cases where A is 
a little better than B, the time factor may tip the balance in B's favor.  

    You may be thinking "Well, a real bank executive would find someone who's both fast and 
accurate." In the case of the Traveling Salesman problem, however, no one has yet found an 
algorithm which finds the exact shortest path every time much faster than the simple method 
given above. And it seems likely that no such algorithm will ever be discovered. The Traveling 
Salesman problem and hundreds of other important problems have been shown to be "NP-
complete", which means essentially that if there is a reasonably fast algorithm for solving any 
one of them, then there is a reasonably fast algorithm for solving all of them. Many 
mathematicians believe that the question of whether such algorithms exist is undecidable in the 
sense of Godel's Incompleteness Theorem: that there's no way to prove that they do, and there's 
no way to prove that they don't.  

    Now, we have discovered algorithms which solve the Traveling Salesman problem faster than 
people, and on the average come up with better answers (Peters, 1985). But there are still some  
collections of cities for which they give the wrong answer, or take a ridiculously long time to 
solve. In the case of the Traveling Salesman problem, it seems that there is no point in looking 
for algorithms which solve the problem exactly, every time. All the algorithms which do that are 
just too slow. Rather, it seems to be more intelligent to look for algorithms that solve the 
problem pretty well a lot of the time.  
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    It turns out that most of the mathematical problems involved in thought and perception are a 
lot like the Traveling Salesman problem. They are "NP-complete". So when, in later chapters, we 
discuss the algorithms of thought, we shall virtually never be discussing algorithms that solve 
problems perfectly. The relevant concept is rather the PAC algorithm -- the algorithm which is 
Probably Approximately Correct.  

PARALLELISM  

    One interesting aspect of the McCullough-Pitts neural network is the way it does many things 
at once. At every time step, all the neurons act. The original formulation of the Turing machine 
was not like that; it only did one thing at a time. It moved the tapes, then looked in its memory to 
see what to do next. Of course, the McCullough-Pitts network and the original Turing machine 
are fundamentally equivalent; anything one can do, so can the other. But the McCullough-Pitts 
network will, in most cases, get things done faster.  

    The computers in popular use today are like the original Turing machine: they only do one 
thing at a time. This is true of everything from PCs to huge mainframe computers -- Cybers, 
VAXs and so forth. They are serialcomputers. Some supercomputers and special-purpose 
research computers, however, can work in parallel: they can do up to hundreds of thousands of 
things at once. The advantage of parallelism is obvious: speed. By using a parallel computer, one 
trades off space for time.  

    There are many different kinds of parallel computers. Some are so-called single-instruction 
machines. They can do many things at once, as long as these things are all the same. For 
instance, a typical single-instruction machine could multiply fifty numbers by four all at the 
same time. But it might not be able to multiply one number by four at the same time as it added 
six to another number.      Multiple-instruction machines are more interesting, but also more 
difficult to build and to program. A multiple-instruction parallel computer is like a bunch of 
serial computers connected to each other. Each one can execute a different program, and 
communicate the results of its computation to certain others. In a way, it is like a society of serial 
computers. Thinking Machines Corporation, in Cambridge, Massachusetts, has manufactured a 
number of powerful multiple-instruction parallel computers called Connection Machines. They 
are now being used in science and industry -- for, among other things, modeling the behavior of 
fluids, analyzing visual data, and generating computer graphics.  

    Why is all this relevant? Some may dispute the neurophysiological relevance of the 
McCullough-Pitts model and its contemporary descendants. But everyone agrees that, if the brain 
is a computer, it must be a parallel computer. The brain contains about 100 billion neurons, all 
operating at once, and besides that it is continually swirling with chemical activity. The diversity 
of its activity leaves little doubt that, if it is indeed a computer, it is a multiple-instruction parallel 
computer. This is the intuition behind the recent spurt of research in parallel distributed 
processing.  

    In Chapter 11 I will take this one step further and argue that the brain should be modeled as a 
multiple-instruction parallel quantum computer. By then, it will be clear just how different 
such a computer is from today's serial computers. We are talking about a computer which does 
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billions of different things at once and incorporates a huge amount of chance into its operations. 
As we shall see later, it is a computer whose state is not completely measurable by any sequence 
of physical observations. It is a computer which, in a physically precise sense, plays a significant 
role in the continual creation of the universe. It could be argued that a computer with all these 
properties should not be called a "computer". But, mathematical theories aside, the intuitive 
concept of computation has always been somewhat fuzzy. As warned in the Introduction, the 
limitations of present-day computers should not be taken as fundamental restrictions on the 
nature of computation.  

1.3 Network, Program or Network of Programs?  

    Throughout history, philosophers, scientists and inventors have arguedprofusely both for and 
against the possibility of thinking machines. Many have also made suggestions as to what sort of 
general strategy one might use to actually build such a machine. Only during the last half-
century, however, has it become technically possible to seriously attempt the construction of 
thinking machines. During this period, there have emerged two sharply divergent approaches to 
the problem of artificial intelligence, which may be roughly described as the "neural network 
approach" and the "programming approach". Cognitive science has played an important role in 
the development of the latter, for obvious reasons: cognitive science analyzes mental processes 
in terms of simple procedures, and simple procedures are easily programmable.  

    What I roughly label the "neural network approach" involves, more precisely, the conception, 
construction and study of electric circuits imitating certain aspects of the electrical structure of 
the brain, and the attempt to teach these circuits to display behavior similar to that of real brains. 
In the late 1940s and the 1950s, no other approach to AI was so actively pursued. Throughout the 
1960s, it became increasingly apparent that the practical success of the neural network approach 
was by no means imminent -- fairly large neural networks were constructed, and though the 
results were sometimes interesting, nothing even vaguely resembling a mind evolved. The rapid 
advent of the general-purpose digital computer, among other factors, led researchers in other 
directions. Over the past decade, however, there has been a tremendous resurgence of interest in 
neural networks.  

    The fundamental tenet of the neural network approach is that certain large, densely 
interconnected networks of extremely simple but highly nonlinear elements can be trained to 
demonstrate many or all of the various activities commonly referred to as intelligence. The 
inspiration for this philosophy was a trend in neuroscience toward the modelling of the brain as a 
network of neurons. The dynamics of the individual neuron was understood by Hodgkin and 
Huxley in 1955, although recent investigations have led to certain modifications of their analysis. 
Unable to mimic the incredible complexity of chemical interaction which underlies and subtly 
alters the operation of a biological network of neurons, and possessing few ideas as to what 
restrictions might be placed on the elements or structure of a network in order to encourage it to 
evolve intelligence, early researchers simply constructed model networks of simulated neurons 
and tried to teach them.  

Each of the neurons of such a network is connected to a small set of other neurons in such a way 
that it can input charge to them. The charge which it sends to them at a given time is a function 
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of the amount of charge which it contains as well as, possibly, other factors. Usually the function 
involved is a threshold function or a continuous approximation thereof. Some researchers 
actually built networks of simulated neurons; others merely simulated entire networks on 
general-purpose computers, sometimes including nontrivial physical aspects of the neural 
network (such as imperfect conductance of connections, and noise).  

    The first problem faced by neural network researchers was the fact that asimple network of 
neurons contains no obvious learning device. Some thought that the ability to learn would 
spontaneously evolve; most, however, implemented within their networks some rule for adapting 
the connections between neurons. The classical example is the Hebb rule (Hebb, 1949): when a 
connection is used, its resistance is decreased (i.e. more of the charge which is issued into it 
actually comes out the other end; less is lost in transit). This may be interpreted in many different 
ways, but it is clearly intended to serve as a primitive form of analogy; it says "this connection 
has been used before, so let us make it easier to use it again." Whether the brain works this way 
we are not yet certain. Various modifications to the Hebb rule have been proposed, mostly by 
researchers thinking of practical algorithmic development rather than biology (Rumelhart and 
McClelland, 1986)  

    Neither the failures nor the successes of this approach have been decisive. Various networks 
have been successfully trained to recognize simple patterns in character sequences or in visual 
data, to approximate the solutions of certain mathematical problems, and to execute a number of 
important practical engineering tasks. On the theoretical side, Stephen Grossberg (1987) and 
others have proven general theorems about the behavior of neural networks operating under a 
wide class of dynamics. And in various particular cases (Hopfield, 1985), it has been proved in 
what sense certain neural networks will converge to approximate solutions to certain problems. 
But it must nonetheless be said that there exists no empirical or theoretical reason to believe that 
neural networks similar to those hitherto designed or studied could ever be trained to possess 
intelligence. There is no doubt that researchers into the neural network approach have 
demonstrated that disordered circuits can be trained to demonstrate various types of adaptive 
behavior. However, it is a long way from adaptation to true intelligence.  

    It is clear that the "neural networks" hitherto produced involve such drastic oversimplifications 
of brain structure that they must be considered parallel processors of a fundamentally different 
nature. In fact, most contemporary practitioners of the neural network approach are quite aware 
of this and continue their labors regardless. Such research is important both practically and 
theoretically. But it is connected only indirectly with the study of the brain or the design of 
thinking machines. For this reason many neural network researchers prefer the term "parallel 
distributed processing" to "neural networks."       

    By the 1970s, the neural network approach had been almost entirely supplanted by what I shall 
call the programming approach: the conception, study and implementation on general-purpose 
computers of various "artificial intelligence" algorithms. Most such algorithms consist of clever 
tricks for approximating the solutions of certain mathematical problems (usually optimization 
problems) thought to reflect important aspects of human mental process. A few approach closer 
to the real world by applying similar tricks to the execution of simple tasks in computer-
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simulated or carefully controlled environments called "microworlds". For example, a famous 
program treats theproblem of piling polyhedral blocks on a flat floor.  

    In the early days of the programming approach, AI programmers were routinely predicting 
that a truly intelligent computer program would be available in ten years (Dreyfus, 1978). Their 
optimism is quite understandable: after all, it took computers only a couple of decades to 
progress from arithmetic to expert chess, competent vision processing, and rudimentary theorem 
proving. By the late 1980s, the programming approach had succeeded in creating algorithms for 
the practical solution of many difficult and/or important problems -- for instance, medical 
diagnosis and chess. However, no one had yet written an AI program applicable to two widely 
divergent situations, let alone to the entire range of situations to which human intelligence is 
applicable. Enthusiasm for AI programming declined.  

    Nearly all contemporary researchers have accepted this and are aware that there is no reason to 
believe true intelligence will ever be programmed by methods remotely resembling those 
currently popular. The modern practice of "artificial intelligence", has little to do with the design 
or construction of truly intelligent artifices -- the increasingly popular term "expert systems" is 
far more descriptive, since the programs being created are never good at more than one thing. 
Feeling that the programming approach is reaching an ill-defined dead-end, many researchers 
have begun to look for something new. Some have seized on parallel processing as a promising 
possibility; partly as a result of this, the neural network approach has been rediscovered and 
explored far more thoroughly than it was in the early days. Some of those who found "neural 
networks" absurd are now entranced with "parallel distributed processing", which is essentially 
the same thing.  

    The programming approach is vulnerable to a critique which runs parallel to the standard 
critique of the neural network approach, on the level of mind instead of brain. The neural 
network approach grew out of a model of the brain as a chaotically connected network of 
neurons; the programming approach, on the other hand, grew out of a model of the mind as an 
ingenious algorithm. One oversimplifies the brain by portraying it as unrealistically unstructured, 
as implausibly dependent on self-organization and complexity, with little or no intrinsic order. 
The other oversimplifies the mind by portraying it as unrealistically orderly, as implausibly 
dependent upon logical reasoning, with little or no chaotic, deeply trial-and-error-based self-
organization.  

    As you have probably guessed, I suspect that the brain is more than a randomly connected 
network of neurons, and that the mind is more than an assemblage of clever algorithm. I suggest 
that both the brain and the mind are networks of programs . Networks of automata.  

    This attitude is not exactly a negation of the neural network or programming approaches to AI. 
Certainly the primary aspect of structure of the brain is the neural network; and certainly the 
mind is proceeding according to some set of rules, some algorithm. But these assertions are 
insufficiently precise; they also describe many other structures besides minds and the organs 
which give rise to them. To deal with either the brain or the mind, additional hypotheses 
arerequired. And I suspect that neither the neural network nor the programming approach is up to 
the task of formulating the appropriate hypotheses.  
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2  

Optimization  

      

2.0 Thought as Optimization  

    Mental process involves a large variety of computational problems. It is not entirely 
implausible that the mind deals with each of them in a unique, context-specific way. But, unlike 
Minsky and many cognitive scientists, I do not believe this to be the case. Certainly, the mind 
contains a huge number of special-purpose procedures. But nearly all the computational 
problems associated with mental process can be formulated as optimization problems. And I 
propose that, by and large, there is one general methodology according to which these 
optimization problems are solved.  

    Optimization is simply the process of finding that entity which a certain criterion judges to be 
"best". Mathematically, a "criterion" is simply a function which maps a set of entities into a set 
of "values" which has the property that it is possible to say when one value is greater than 
another. So the word "optimization" encompasses a very wide range of intellectual and practical 
problems.  

    For instance, virtually all the laws of physics have been expressed as optimization problems, 
often with dramatic consequences. Economics, politics, and law all revolve around finding the 
"best" solution to various problems. Cognitive science and many forms of therapeutic 
psychology depend on finding the model of a person's internal state which best explains their 
behavior. Everyday social activity is based on maximizing the happiness and productivity of 
oneself and others. Hearing, seeing, walking, and virtually all other aspects of sensation and 
motor control may be viewed as optimization problems. The Traveling Salesman problem is an 
optimization problem -- it involves finding the shortest path through n cities. And, finally, the 
methodological principle known as Occam's razor suggests that the best explanation of a 
phenomenon is the simplest one that fits all the facts. In this sense, all inquiry may be an 
optimization problem, the criterion being simplicity.  

    Some of these optimization problems have been formulated mathematically --e.g. in physics 
and economics. For others, such as those of politics and psychology, no useful formalization has 
yet been found. Nonmathematical optimization problems are usually solved by intuition, or by 
the application of extremely simple, rough traditional methods. And, despite a tremendous body 
of sophisticated theory, mathematical optimization problems are often solved in a similar 
manner.  

    Although there are dozens and dozens of mathematical optimization techniques, virtually none 
of these are applicable beyond a very narrow range of problems. Most of them -- steepest 
descent, conjugate gradient, dynamic programming, linear programming, etc. etc. (Dixon and 



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

25

Szego, 1978; Torn et al, 1990) -- rely on special properties of particular types of problems. It 
seems that most optimization problems are, like the Traveling Salesman problem, very hard to 
solve exactly. The best one can hope for is a PAC solutions. And, in the "classical" literature on 
mathematical optimization, there are essentially only two reasonably general approaches to 
finding PAC solutions: the Monte Carlo method, and the Multistart method.  

    After discussing these methods, and their shortcomings, I will introduce the multilevel 
philosophy of optimization, which incorporates both the Monte Carlo and the Multistart methods 
in a rigid yet generally applicable framework which applies to virtually any optimization 
problem. I will propose that this philosophy of optimization is essential to mentality, not least 
because of its essential role in the perceptual and motor hierarchies, to be discussed below.  

2.1 Monte Carlo And Multistart  

    The Monte Carlo philosophy says: If you want to find out what's best, try out a lot of different 
things at random and see which one of these is best. If you try enough different things, the best 
you find will be almost certainly be a decent guess at the best overall. This is a common 
approach to both mathematical and intuitive optimization problems. Its advantages are simplicity 
and universal applicability. Its disadvantage is, it doesn't work very well. It is very slow. This 
can be proved mathematically under very broad conditions, and it is also apparent from practical 
experience. In general, proceeding by selecting things at random, one has to try an awful lot of 
things before one finds something good.  

    In contrast to the Monte Carlo philosophy, the Multistart philosophy depends on local search. 
It begins with a random guess x0, and then looks at all the possibilities which are very close to 
x0. The best from among these possibilities is called x1. Then it looks at all the possibilities 
which are very close to x1, selects the best, and calls it x2. It continues in this manner -- 
generating x3, x4, and so on -- until it arrives at a guess xn which seems to be better than anything 
else very close to it. This xn is called a local optimum -- it is not necessarily the best solution to 
the optimization problem, but it is better than anything in its immediate vicinity.  

    Local search proceeds by looking for a new answer in the immediate locality surrounding the 
best answer one has found so far. The goal of local search is to find a local optimum. But, as 
Figure 1 illustrates, a local optimum is not always a good answer. It could be that, although there 
is nothing better than xn in the immediate vicinity of xn, there is something much better than xn 
somewhere else.  

    In mathematical optimization, it is usually easy to specify what "very close" means. In other 
domains things may be blurrier. But that doesn't mean the same ideas aren't applicable. For 
instance, suppose a politician is grappling with the problem of reducing carbon monoxide 
emissions to a safe level. Maybe the best idea she's found so far is "Pass a law requiring that all 
cars made after 1995 emit so little carbon monoxide that the total level of emissions is safe". 
Then two ideas very near this one are: "Pass a law giving tax breaks to corporations which make 
cars emitting safe levels of carbon monoxide", or "Pass a law requiring that all cars made after 
1992 emit so little carbon monoxide that the total level of emissions is safe." And two ideas 
which are not very near x0 are: "Tax automakers more and give the money to public 
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transportation" and "Give big tax breaks to cities which outlaw driving in their downtown areas." 
If she decides that none of the ideas near "Pass a law requiring that all cars made after 1995 emit 
so little carbon monoxide that the total level of emissions is safe" is as attractive as it is, then this 
idea is a local optimum (from her point of view). Even if she felt that taxing automakers more 
and giving the money to public transportation were a better solution, this would have no effect 
on the fact that giving tax breaks to corporations that make safe cars was a local optimum. A 
local optimum is only better than those things which are very similar to it.  

    The Multistart philosophy says: Do a bunch of local searches, from a lot of different starting 
points, and take the best answer you get as your guess at the overall best.  

    Sometimes only one starting point is needed. For many of the optimization problems that arise 
in physics, one can pick any starting point whatsoever and do a local search from that point, and 
one is guaranteed to arrive at the absolute best answer. Mathematically, a problem of this sort is 
called convex. Unfortunately, most of the optimization problems that occur in politics, sensation, 
motor control, biology, economics and many other fields are nonconvex. When dealing with a 
convex optimization problem, the only thing you have to worry about is how well you go about 
picking the best from among those entities close to your best guess so far. Each year dozens of 
papers are written on this topic. But convexity is a very special property. In general, local search 
will not be effective unless it is applied according to the Multistart philosophy.  

    The Multistart philosophy works well for problems that don't have too many local optima. For 
instance, it would take a very long time to solve the problem in Figure 1 according to the 
Multistart philosophy. In this case the Monte Carlo approach would be preferable; the local 
searches are essentially a waste of time.  

2.2 Simulated Annealing  

    In recent years a new approach to global optimization has become popular, one which 
combines aspects of Monte Carlo search and local search. This method, called simulated 
annealing, is inspired by the behavior of physical systems. Statistical mechanics indicates that 
the state of many systems will tend to fluctuate in a random but directed manner.  

    To understand this, we must introduce the "state space" of a system, a mathematical set 
containing all possible states of the system. In state space, two states A and B are understood to 
be neighbors if there is a "simple, immediate" transition between the two. Let E(A) denote the 
energy of the state A.  

    In the particular case that the system involved is computational in nature, each of its possible 
states may be described by a finite sequence of zeros and ones. Then two states are neighbors if 
their corresponding sequences differ in exactly one place. This situation arises in "spin glass 
theory", a rapidly growing field which connects optimization theory and physics.  

    In the case of spin glasses, physics dictates that, if A and B are neighboring states, the 
probability of the state of the system changing from A to B is determined by 1) the quantity E(A) 
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- E(B), and 2) the temperature, T, of the system. The schematic formula for the probability of 
going from state A to state B is  

    P(B%A) = 1/[1+exp([E(B)-E(A)]/kT)],  

where k is Boltzmann's constant (Mezard, 1987).  

Temperature corresponds to randomness. If T=0, the system has probability one of going to a 
state of lower energy, and probability zero of going to a state of higher energy. So when T=0, the 
system will automatically settle into a local minimum of the energy function. The higher T is, the 
more likely it is that the law of energy minimization will be violated; that there will be a 
transition to a state of higher energy. The analogy with optimization is obvious. At T=0, we have 
local search, and at T=infinity we have P(B%A)=1/2, so we have a random search: from any 
state, the chance of going to either of the two neighbors is equal. At T=infinity, the system will 
continue to fluctuate at random forever, never expressing a preference for any particular state or 
set of states. This process is called thermal annealing.  

    In optimization problems, one is not concerned with energy but rather with some general 
function f. Let us assume that this function assigns a number to each finite string of zeros and 
ones. Then, in order to minimize f, one may mimic the process of thermal annealing. Starting 
from a random initial sequence, one may either remain there or move to one of the two 
neighbors; and the probability of going to a given neighbor may be determined by a formula like 
that involved in thermal annealing.  

    In practice, the spin-glass formula given above is modified slightly. Starting from a random 
initial guess x, one repeats the following process:  

1. Randomly modify the current guess x to obtain a new guess y,  

2. If f(y)<f(x) then let x=y and return to Step 1,  

3. If f(y)>f(x) then let x=y with probability exp([f(y)-f(x)]/T), and return to Step 1  

The tricky part is the way the "temperature" T is varied as this process is repeated. One starts 
with a high temperature, and then gradually decreases it. The idea is that in the beginning one is 
locating the general region of the global minimum, so one does not want to be stuck in shallow 
local minima; but toward the end one is presumably already near the local minimum, so one 
simply wants to find it.  

    Philosophically, this is somewhat similar to the multilevel approach to be described in the 
following section. Both involve searches on various "levels" -- but here they are levels of risk, 
whereas with the multilevel method they are levels of "magnification". Neither approach is 
perfect; both tend to be too slow in certain cases. Probably the future will yield even more 
effective algorithms. But it is not implausible that both simulated annealing and multilevel 
optimization play significant roles in the function of the mind.  
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2.3 Multilevel Optimization  

    The basic principles of multilevel optimization were enounced in my Ph.D. thesis (Goertzel, 
1989). There I gave experimental and theoretical results regarding the performance of a number 
of specific algorithms operating according to the multilevel philosophy. Shortly after completing 
this research, however, I was surprised to find that the basic idea of the multilevel philosophy 
had been proposed by the sociologist Etzione (1968), in his Adaptive Society, as a method for 
optimizing the social structure. And a few months later I became aware of the strong similarity 
between multilevel optimization and the "discrete multigrid" method of Achi Brandt (1984) (who 
introduced the term "multilevel" into numerical analysis). Brandt's ideas were introduced in the 
context of spin-glass problems like those described above. These parallels indicate how 
extremely simple and natural the idea is.  

    The first key concept is that the search for an optimum is to be conducted on a finite number 
of "levels", each one determined by a certain characteristic distance. If the levels are denoted 
1,2,...,L, the corresponding distances will be denoted h1,...,hL, and we shall adopt the convention 
that hi<hi+1. The multilevel philosophy assumes the existence of some method of "search" which 
finds an optimum value "about a point x on level i." There are many ways of executing such 
search. For instance, one may execute Monte Carlo search over the sphere of radius hi about x. 
Or one may execute Monte Carlo search over the surface of the sphere of radius hi about x. Such 
choices constitute specific multilevel methods operating within the framework of the multilevel 
philosophy. The multilevel philosophy has to do not with the nature of the searches but with the 
relation between searches executed on various levels.  

    A method operating within the multilevel philosophy may or may not incorporate a "zero 
level," a local optimization method. First let us consider thecase L=1, with a zero level. In this 
case the concept is as follows. Given an initial guess x0, first execute the local optimization 
method is executed at this point. When the local optimization routine stops (having found a local 
extremum), stops proceeding fast enough (according to some preassigned threshold), or finishes 
a preassigned number of steps at some point w0, then search on level 1 is executed about w0, 
yielding a new point z0. Local optimization is then executed about z0, until it is halted by one of 
the three criteria, yielding a new point y0. Next, f(y0) is compared with f(x0). If f(y0) is better than 
f(x0), then the entire procedure is begun from y0; i.e. x0 is set equal to y0 and the algorithm is 
restarted. But if f(x0) is better, the program is terminated; x0 is the "answer." The idea is to avoid 
getting stuck in a shallow local optimum, or getting stuck crawling up an extremely gentle slope, 
by "jumping" away from the optimum by the nonlocal search on level 1.  

    If no zero level were implemented, and the local optimization routine in the above description 
were replaced with the identity mapping, one would still have a viable optimization method, 
which we shall call the one-level method. If h1 is very small, then the one-level method is a 
general-purpose local optimization method. In fact, in the case of a Boolean function one may 
take h1=1 (Hamming distance) and take the level-1 search to be an exact search on the surface of 
the sphere of radius 1 (there is no interior but the center). One then has the standard discrete 
steepest-descent method. And, in the continuous case, if one takes the level-1 search method to 
be a Monte Carlo search on the surface of the sphere of radius h1, then one has a simple, 
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unoriginal approach to steepest-descent optimization which is probably as good as anything else 
for local optimization of functions with extremely "rugged" graphs.  

    Next, consider the case L=i, i>1. Here, given an initial guess x0, we first execute the algorithm 
for L=i-1 about this point. When the L=i-1 routine stops (having found an "answer"), stops 
proceeding fast enough (according to some preassigned threshold), or finishes a preassigned 
number of steps at some point w0, then search on level i is executed about w0, yielding a new 
point z0. The L=i-1 routine is then executed about z0, until it is halted by one of the three criteria, 
yielding a new point y0. Next, f(y0) is compared with f(x0). If f(y0) is better than f(x0), then the 
entire L=i procedure is begun from y0; i.e. x0 is set equal to y0 and the algorithm is restarted. But 
if f(x0) is better, the program is terminated; x0 is the "answer."  

    For L=2, this procedure, if it has a zero level, first seeks a local optimum, then seeks to jump 
out of it by searching on level 1, and then seeks to jump out of the result of this jumping-out by 
searching on level 2. L=2 without a zero level is the same as L=1 with the one-level method as a 
zero-level.  

    Similarly, the L=i procedure seeks to jump out of the result of jumping out of the result of 
jumping out of... the result of jumping out of the result of the lowest level.  

    The following instance may give an heuristic conception of the crux of the multilevel 
philosophy. For simplicity, we assume no zero level, and we assume the first of the three criteria 
for stopping search: search on level i is stoppedonly when an "answer" on level i-1 is found. The 
same example may just as easily be applied to the other cases.  

A SIMPLE EXAMPLE  

    Consider a function which maps a numerical value to each house in the world, and suppose a 
person is trying to find the house with the highest number. If the distribution of numbers is 
totally random, it doesn't matter what order he checks the various houses in. But what if there is 
some intrinsic, perhaps subtle, structure to it? What does the multilevel philosophy tell him to 
do?  

    Starting from a randomly selected house, he should first check all houses on that block and see 
which one has the highest number. Then he should check the neighboring block in the direction 
of this optimal house. If no house on that block is better, he should call the best house he's found 
so far his block-level optimum. But if some house on that block is better, then he should proceed 
to check the neighboring block in the direction of this new optimal house. And so on, until he 
finds a block-level optimum.  

    Once he finds a block-level optimum, he should then take a rough survey of the town in which 
the block sits, and make a guess as to which areas will be best (say by the Monte Carlo method). 
He should pick a block in one of the areas judged best and execute block-level search, as 
described above, from this block, and so on until he reaches a new block-level optimum. Then he 
should compare the two block-level optima and call the best of them his tentative town-level 
optimum.  
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    Then he should proceed to the town in the direction of this optimum and there execute town-
level optimization as described above. He should compare his two tentative town-level optima 
and, if the old one is better, call it his town-level optimum. But if the new one is better, then he 
should proceed to the neighboring town in its direction and locate a new tentative town-level 
optimum. And so on, until he obtains a town-level optimum.  

    Then he should make a rough survey of the county in which this town sits, and make a guess 
as to which areas will be best (say by the Monte Carlo method). He should pick a town in one of 
the areas judged best and execute town-level search, as described above, from this town, and so 
on until he reaches a new town-level optimum. Then he should compare the two town-level 
optima and call the best of them his tentative county-level optimum.  

    Then he should proceed to the county in the direction of this optimum and there execute 
county-level optimization as described above. He should compare his two tentative county-level 
optima and, if the old one is better, call it his county-level optimum. But if the new one is better, 
then he should proceed to the neighboring county in its direction and locate a new tentative 
county-level optimum. And so on, until he obtains a county-level optimum. Applying the same 
logic, he could obtain state-wide, nation-wide and global optima...  

  
 

3  

Quantifying Structure   

      

3.0 Algorithmic Complexity  

    What does it mean to say that one thing is more complex than another? Like most words, 
"complexity" has many meanings. In Chapter 1 we briefly discussed the "complexity" of 
computation -- of problems and algorithms. In this chapter we will consider several approaches 
to quantifying the complexity of individual entities, beginning with the simple Kolmogorov-
Chaitin-Solomonoff definition.  

    Throughout this chapter, when I speak of computers I will mean ordinary Turing machines, 
not stochastic or quantum computers. As yet, no one really knows how to deal with the 
complexity of objects in the context of stochastic or quantum computation, not in complete 
generality. Since a quantum computer can compute only those functions that a Turing machine 
can also compute, this limitation is not fatal.  

    It turns out that the easiest way to approach the complexity of objects is via the complexity of 
sequences of numbers. In particular, I will concentrate on binary sequences: sequences of zeros 
and ones. As is common in mathematics, the general issue can be resolved by considering what 
at first sight appears to be a very special case.  
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    The standard approach to the complexity of binary sequences was invented independently by 
A.N. Kolmogorov, Gregory Chaitin, and Solomonoff (Chaitin, 1987), so we shall call it the KCS 
complexity. In my opinion, what the KCS definition measures is not very well described by the 
word "complexity." Lack of structure  would be a better term.  

     Given any computer A, the KCS complexity of a sequence x is defined to be the length of the 
shortest self-delimiting program on A which computes x. The restriction to "self-delimiting" 
programs is necessary for technical purposes and will not worry us much here; roughly speaking, 
a self-delimiting program is one which contains a segment telling the computer which runs it 
how long it is. In the following, I may occasionally refer to "shortest programs" instead of 
"shortest self-delimiting programs"; but it should be implicitly understood thatall programs 
discussed are self-delimiting.  

    For instance, the KCS complexity of the sequence 10011010010010010 on an IBM PC is the 
length of the shortest program which, when loaded into the PC, causes it to output 
10011010010010010 on the screen. In what follows, I will occasionally refer to the KCS 
complexity of a sequence x as KCS(x).  

    There is some vagueness here, as to what "length" means. For one thing, there are large 
differences between the various programming languages on the market today. There are a 
number of "high-level" languages, which allow one to type in programs vaguely resembling 
mathematical formulae: Fortran, Pascal, Cobol, Snobol, Ada, Prolog, C, Basic, Lisp, Forth, and 
so on. A program which is short in Pascal may be long in Cobol; and a program which is short in 
Basic may be long in Pascal. And then there is "assembly language", which refers directly to the 
hardware of the computer. A program in assembly language is usually very long. However, 
before a computer can use a program written in a high-level language, it must translate it into 
assembly language. (The program which does the translation is called the "compiler"). When 
figuring the length of a program written in Fortran, should we use the number of characters in the 
program as originally typed in, or the number of characters in the assembly-language translation 
of the program?  

    From the point of view of the mathematical theory of complexity, none of these issues matter. 
We can simply assume we are dealing with a universal Turing machine. Translating from a 
foreign language is essentially the same as simulating another computer. So if a sequence is long 
enough, its KCS complexity is essentially language-independent and computer-independent. For 
example, say you have a sequence x consisting of a billion 0s and 1s. Suppose it can be 
computed by a program of length 1,000,000 on an IBM PC. Suppose a VAX computer has been 
programmed to simulate a PC, and suppose this simulation program has length 200,000. Then 
the shortest program for computing x on the VAX cannot be any longer than 1,200,000. Because, 
if all else fails, one can compute x on the VAX by simulating a PC. These numbers are highly 
unrealistic, but the point is that as the sequences get longer and longer, the size of the simulation 
program remains the same. When the sequences are a trillion digits long, the 200,000 length of 
the simulation program will mean next to nothing.  

    Some of the newer programming languages are actually "universal programming languages" 
in a very practical sense: any contemporary programming language can be compactly written in 
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them. For instance, one could write a C program which simulated Pascal or Lisp or Fortran, or a 
Lisp program that simulated Pascal or Fortran or C. (In fact, what is now known as Lisp was 
originally written in a simpler form of Lisp, and what is now known as C was originally written 
in a simpler form of C.) Let's say a certain sequence x could be computed by a very short Fortran 
program. Then one way to compute the sequence on a machine with a built-in Lisp compiler 
would be to write a Lisp program to simulate Fortran. If there were no simpler way to compute 
the sequence in Lisp, this might yield the shortest program forcomputing the sequence on that 
particular machine.  

    Again: the beauty of theoretical computer science is that, as long as we are talking about long 
sequences, we don't have to worry about the properties of specific machines or languages. This is 
what differentiates theoretical computer science from practical computer science. Naturally, the 
latter is more visible in the everyday world. However, both the theory and the practice of 
computer science are essential to the study of mind.  

    What is the KCS complexity of the sequence 0101010101010101 
010101010101010101010101? It should be very small on any computer, because one can write a 
program saying "Print '01' twenty times". And what is the complexity of the sequence consisting 
of 01 repeated 1,000,000,000,000 times? This should still be very small on any computer, 
because one can write a program saying "Print '01' 1,000,000,000,000 times."  

    Note that this program is not quite as short as "Print 01 20 times". Our program for repeating 
'01' 1,000,000,000,000 times is 31 characters long, but our program for repeating '01' 20 times is 
only 16 characters long. The difference is, obviously, that it takes more space to write 
'1,000,000,000,000' than it does to write '20'. As n increases, the KCS complexity of repeating 
something over and over again n times increases. But it does not increase very fast. After all, 
1,000,000,000,000 is 50,000,000,000 times as large as 20. But, according to the programs written 
above, the KCS complexity of repeating '01' 1,000,000,000,000 times is only 31/16 times the 
KCS complexity of repeating '01' 20 times.  

    The ratio of program sizes, here 31/16, may vary from computer to computer, from 
programming language to programming language. It would be different if this book were written 
in Spanish rather than English, because the equivalent of the word "print" would not have exactly 
five letters in it. But it is difficult to imagine a computer on which it would approach 
50,000,000,000. Mathematically, we may say that as n gets bigger and bigger, the size of the 
shortest program for repeating something n times gets closer and closer to log(n). This is little 
more than common sense, because the number of digits in the decimal expansion of a large 
number n is always very close to log(n).  

    What about the KCS complexity of the sequence 010011000111 
00001111000001111100000011111100000001111111? This depends on  

whether it is shorter to say  

    Print 0100110001110000111100000111110000001111110000000             1111111  
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or to say  

        Do the following for k=1, then k=2, and so on up to k=7:  

                    Print k '0's and then k '1's"  

In this case the former is a bit shorter. But consider the sequence 
01001100011100001111000001111100000011111100000001111111  

00000000111111110000000001111111110000000000111111111100000000000  

1111111111100000000000011111111111100000000000001111111111111  

0000000000000011111111111111? Here there is no doubt that the latter sort of program is 
shorter.  

    Actually determining the KCS complexity of a sequence is a difficult matter. There are 
sequences which look completely random and can nonetheless be computed by short programs. 
For instance, if one printed the first ten thousand digits of the binary expansion of pi, virtually no 
human being would recognize any structure in it.  

    On the other hand, what is the complexity of a sequence x which is completely random in the 
sense of having no structure whatsoever? In this case the best way to compute x is to write a 
program saying "Print x". This program is about as long as x is. If x has n digits, this program 
has length n+c, for some small constant c. In the case of the program as written above, c=5. 
According to the KCS definition, a completely structureless sequence such as 
10010100101001000011101001101001010010110001100101010001110110101 
010001001010010100100101001010110101  

is the most complex kind of sequence, with a complexity approximately equal to n. On the other 
hand, a sequence with a very simple structure, such as 1111111111111111111111, is the least 
complex kind of sequence, with a complexity approximately equal to log(n). Sequences with 
more intricate structures fall somewhere inbetween.  

    It can be shown that no program can compute the KCS complexity of an arbitrary sequence. 
For any program P, there is some X the KCS complexity of which P cannot compute.  

3.1 Randomness  

    It is natural to define a random sequence as one which has no statistical regularities (von 
Mises, 1957). For instance, one might propose that in a random binary sequence 1 should occur 
exactly as often as 0. Also, one might require that the four doublets 00, 01, 10 and 11 should 
occur equally often. And perhaps the eight triplets 000, 001, 010, 011, 100, 101, 110, and 111 
should occur with equal frequency. And so on. It would clearly be desirable to define a random 
sequence as one in which all subsequences of length n occur with equal frequency. Let us call 
this the natural definition.  
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    Clearly, this definition does not apply to finite sequences. Each sequence of length n contains 
exactly one subsequence of length n (itself), so it certainly does not contain all sequences of 
length n equally often. According to this definition only an infinitely long sequence can be 
random.  

    Early in this century it was discovered that there is a basic flaw in this approach. The 
restrictions imposed by the natural definition are so stringent that no sequence, finite or infinite, 
can possible satisfy them. However, they are not beyond repair. A normal sequence is defined as 
one in which, as you go further and further out in the sequence, the frequencies of all the 
subsequences of length n get closer and closer to being equal. For instance, if one tooksamples of 
a normal sequence near the beginning, one might well find a lot more 00s than 01s, 10s or 11s. 
But eventually, if one took samples far enough out, one would have to find 00s, 01s, 10s and 11s 
equally often.  

    Intuitively speaking, if you tossed a coin and recorded 0 whenever tails came up, 1 whenever 
heads came up, you would expect the list of 0's and 1's to be a normal sequence. Essentially, a 
normal sequence is a sequence in which, as you go further and further out, each digit has less and 
less to do with the others. Just as, in a series of coin tosses, each toss has essentially nothing to 
do with the others.  

    That is one approach to randomness. There is another approach, involving the KCS definition 
of complexity, which also involves infinite sequences. What is remarkable is that the two 
different approaches turn out to be closely related.  

RANDOMNESS AND COMPLEXITY  

    Consider an infinitely long binary sequence x. Let x[n] denote the first n terms of x. For 
instance, if x = 01001101010001001010..., then x[7] = 0100110. The idea behind the KCS 
approach to randomness is that the complexity of the infinite sequence x can be defined in terms 
of the complexities of the finite sequences x[n]. The first step is to ask: as n gets bigger and 
bigger, what happens to the KCS complexity of x[n]? If x = 0000000..., then the question has an 
easy answer. The sequence x[n] consists of n zeros, and KCS(x[n]) complexity is about log(n). 
And, intuitively speaking, if x is totally structureless, then x[n] has a KCS complexity of about n. 
These considerations lead up to the crucial insight, due to Kolmogorov and Per Martin-Lof. Look 
at what happens to the ratio KCS(x[n])/n as n gets bigger and bigger.  

    If, as n gets bigger and bigger, KCS(x[n])/n gets closer and closer to 1, then it follows that for 
large n, KCS(x[n]) is close to n. And this means that, for large n, x[n] essentially has no 
structure. On the other hand, if KCS(x[n])/n gets closer and closer to zero as n increases, this 
means that for large n there is indeed some structure in x[n]. It means that, for large n, there is 
indeed a better way of computing x[n] than just saying "Print 'x[n]'".  

    What if x looks like this: 01010000010000010001000100 00000100010001...? Here every 
other digit is a zero: the first, the third, the fifth, and so on. But the even-numbered digits follow 
no apparent pattern. What if x continued this way forever? Then x[n] could be computed by a 
program of the form "Print this sequence, putting a '0' between every two terms: '110010...'", 
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where '110010...' is a finite sequence consisting of the odd-numbered terms of x[n]. How long is 
this program? Well, the sequence consisting of the odd-numbered terms of x[n] is about n/2 
digits long. So here KCS(x[n]) is about n/2. Thus KCS(x[n])/n is about 1/2.       

    Ignoring a number of technical issues, we may define a random infinite sequence x as a 
sequence for which, as n gets bigger and bigger, KCS(x[n])/n does not approach zero, but rather 
approaches some other number. A randominfinite sequence x is one for which there is a fairly 
easy way of computing x[n], when n gets large. It can be proved that almost all infinitely long 
sequences are random in this sense -- algorithmically random.  

    One way to understand this definition is as follows: A random sequence is an infinite sequence 
which cannot be summed up in any formula of finite length. For instance, 00000000... can be 
summed up in the formula "Repeat '0' forever". And 010010001000010000010000001... can be 
summed up in the formula "Repeat '0' k times and then print '1', for k=1,2,3,4,...." But a random 
sequence x cannot be summed up in any formula, because if it could then that formula would 
provide a way to compute x[n].  

    Clearly, every sequence which is random in this sense is not normal. Think about the sequence 
given three paragraphs up, whose odd-numbered digits are all zeros but whose even-numbered 
digits have no structure to them. No matter how far out you look, 0's and 1's are not going to 
occur equally often in this sequence. There will always be more 0's. The best you can say about 
this sequence is that it has a subsequence -- the sequence of its even-numbered digits -- which 
looks to be normal.  

PROBLEMS WITH RANDOMNESS  

    The theories of randomness sketched above are not very useful in practice, for obvious 
reasons. It only deals with infinitely long sequences. In reality, we are always faced with finite 
collections of data.  

    This restriction to infinite sequences leads to a couple of interesting conceptual paradoxes. 
First of all, the very proof that random sequences exist is somewhat troublesome. We have 
proved that almost every infinite sequence is random, but can we prove that any one particular 
sequence is random? We cannot, because random sequences are precisely those infinite 
sequences which cannot be summarized in a finite formula. In fact, the set of random sequences 
is precisely the set of all sequences which we cannot write down in any way. We have proved 
that the set exists, but we cannot demonstrate that any particular sequence belongs to it, because 
in order to do so we would have to write down that particular sequence. This is not exactly a 
logical paradox, but it is certainly disconcerting.  

     G. Spencer-Brown has discovered a particularly poignant way of illustrating the implications 
of this logical peculiarity. Suppose, he says, that you have built a random number generator -- a 
machine which is intended to generate numbers in such a way that each number it generates has 
absolutely nothing to do with the others. Then how can you test it to see if it works?  
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    Suppose you tested it and it gave out a hundred zeros in a row. You would probably assume 
that it was broken. But, statistically speaking, a truly random number generator would generate a 
hundred zeros in a row sometimes. Not very often, but sometimes. There's no reason that rare 
occasion shouldn't comefirst. After all, the sequence consisting of a hundred zeros in a row is no 
less likely than any other sequence of a hundred numbers.  

    So you run it some more. And the same thing happens -- it keeps giving tens. Still, you're not 
really justified in concluding that it doesn't work. The same argument applies. The fact is that no 
matter what the machine does for the first n trials, it can be argued that a true random number 
generator would be just as likely to generate that sequence as any other. So no matter what the 
machine does, you can't judge its effectiveness.  

    You could examine the mechanism of your random number generator to see if it looks as 
though it is operating randomly. For instance, you could supply it with a mechanical coin tosser. 
Then you'd probably be confident its answers were random, since you're probably confident the 
results of a coin toss are random. But this is nothing more or less than intuition: you're assuming 
something is random because you haven't seen any structure to it in the past. An intuition is not 
the same as a theoretical guarantee.  

    Essentially, this paradox arises from the assumption that a random number generator must 
give out every sequence of length n with equal frequency. But is there any other way to define a 
random number generator? One could define a random number generator as a machine which 
generates a normal sequence of numbers, but it is easy to see that there is no way to prove a 
finite sequence is part of a normal sequence. This is because the definition of normality involves 
going "far enough out" in a sequence. Once you go far enough out in a normal sequence, all 
subsequences of length n must occur equally often. But as n increases, so does the precise 
meaning of "far enough". Say you determine that the first million terms of a sequence present all 
subsequences of length 1000 or less with the appropriate frequencies. That still doesn't tell you 
whether or not the sequence repeats a certain subsequence of length 1,000,000,000 too often. In 
fact, for all you know, the sequence could consist of the same million-digit-long sequence 
repeated over and over and over.  

    And remember, normality is in a sense a weaker concept than algorithmic randomness -- it 
says that the decimal expansion of pi is random. It is even more obvious that there is no way to 
tell if a finite sequence is part of an infinite (algorithmically) random sequence. After all, if we 
just see the fragment 01001001010011001001, how do we know it's part of a random sequence 
and not part of the sequence 01001001010011001001 01001001010011001001 
01001001010011001001 01001001010011001001... which repeats the same fragment over and 
over again. This dilemma is reminiscent of the problem of induction, to be discussed in Chapter 
5.  

    Our discussion has been phrased in terms of binary sequences, but it could be generalized to 
deal with any other mathematical objects in exactly the same way. The conclusions would not 
change a bit. The only things that are truly, mathematically random are infinitely large entities 
which can never even be summarized in finite formulas. And there is no practical way to tell if a 
given physical machine produces mathematically random sequences.  
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    In sum: randomness is a phantom. In reality, all we can do is assume thatthose things we've 
detected no structure in are random. But this is a working assumption, not a mathematical 
guarantee. And therefore, the question of whether the mind and brain are stochastic or 
deterministic is a phantom as well. Thus there can never be an empirical reason to say that the 
mind or the brain is a stochastic computer rather than a deterministic computer. Because, 
scientifically speaking, to say that X is random is only to say that X has aspects in which we 
cannot detect any order. To declare that there is consequently no order there is unjustified.  

3.2 Pattern  

    Charles S. Peirce, the turn-of-the-century American philosopher, liked to talk about the "one 
law of mind." He gave this law many different formulations, the most suggestive of which was 
only five words: "the tendency to take habits". This simple, potent idea is at the heart of the 
theory of mind to be presented in the following chapters. But instead, of "habits", I prefer to 
speak of "patterns". And rather than taking "habit" or "pattern" as a primitive undefined term, I 
will begin by providing a sketchy but completely rigorous mathematical theory of pattern.  

    As I understand it, the concept of pattern relies on two simpler ideas: combination and 
complexity. More precisely, in order to talk about certain entities being patterns in other entities, 
we must have  

        1) some way of combining certain pairs of entities y and z to obtain a third entity called y*z  

        2) some way of computing, for every entity x, a nonnegative real number %x% called the 
complexity of x  

Any set of entities which fulfills these requirements may be called a pattern space. Formally, 
we may say:  

Definition 3.1: A pattern space is a set (S,*,% %), where S is a set,     * is a binary operation 
defined on some subset of SxS, and % % is a map from S into the nonnegative real numbers.  

    Let's consider a simple example: Turing machines and finite binary sequences. If y is a Turing 
machine and z is a finite binary sequence, then there is a natural way of combining x and y -- just 
put y on the input tape of the Turing machine, extending to the right of the tape head. In this 
case, we can define x*y to be the binary sequence which appears on the tape of the Turing 
machine y after, having been started with z on its tape, its program finishes running. It is true that 
there is no guarantee the Turing machine will ever stop running. But if it doesn't, we can simply 
consider x*y to be undefined, and leave it at that.  

    As for requirement number 2, we can define the complexity %z% of a finite binary sequence z 
as its length. And, roughly speaking, we can define the complexity %y% of a Turing machine y 
as the length of its program. More precisely, %y% might be defined as length of the code 
number which, when fed into a certain universal Turing machine, enables that Turing machine to 
act exactly like machine y in every situation. Here %y% and %z% are nonnegative numbers, so 
the set of Turing machines and finite binary sequences is a pattern space.  
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    Since we shall be returning to this example again and again, it is worth formulating a specific 
notation. Let %z%T denote the length of a finite binary sequence z, and let %y%T denote the 
length of the program y.  

    Now we are prepared to ask: what is a pattern?  

    First of all, a pattern is a pattern in something, in some entity x. Secondly, a pattern is an 
ordered pair of entities, denoted (y,z). And finally, we have what I shall call the fundamental 
pattern inequality:  

Definition 3.2: Let a, b, and c denote constant, nonnegative numbers.  

Then an ordered pair (y,z) is a pattern in x if x=y*z and  

a%y% + b%z% + cC(y,z) < %x%.  

    The only unfamiliar term here is C(y,z). This denotes the complexity of obtaining x from (y,z). 
If y is a Turing machine program and z is a finite binary sequence, we shall let CT(y,z) denote the 
number of time steps which the Turing machine takes to stop when equipped with program y and 
given z as initial input.  

    For many purposes, the numbers a, b and c are not important. Often they can all be taken to 
equal 1, and then they don't appear in the formula at all. But in some cases it may be useful to set 
a=b=1 and c=0, for instance. Then the formula reads %y% + %z% < %x%. The constants lend 
the formula an element of flexibility.  

    Intuitively, an ordered pair (y,z) is a pattern in x if the complexity of y, plus the complexity of 
z, plus the complexity of getting x out of y and z, is less than the complexity of x. In other words, 
an ordered pair (y,z) is a pattern in x if it is simpler to represent x in terms of y and z than it is to 
say "x". The constants a, b and c just weight things: if a=3/4 and b=5/4, for example, then the 
complexity of y counts less than the complexity of z.  

    The definition of pattern can be generalized to ordered n-tuples, and to take into account the 
possibility of different kinds of combination, say *1 and *2.  

Definition 3.3: An ordered set of n entities (x1,x2,...,xn) is a     pattern in x if x=x1*1x2*2...*n-1xn 
and a1%x1%+a2%x2%+...+an%xn%+ an+1C(x1,...,xn) < %x%, where C(x1,...,xn) is the complexity 
of computing x1*1x2...*n-1xn and a1,...,an+1 are nonnegative numbers.  

Also, the following concept will be of use:  

Definition 3.4: The intensity in x of a ordered pair (y,z) such  

    that y*z=x may be defined as  

         IN[(y,z)%x] = ( %x% - [a%y% + b%z% + cC(y,z)] )/%x%.  
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    Obviously, this quantity is positive whenever (y,z) is a pattern in x, and negative or zero 
whenever it is not; and its maximum value is 1.  

AN EXAMPLE: GEOMETRIC PATTERN  

    Most of our discussion will be devoted to Turing machines and binary sequences. However, 
the definition of pattern does not involve the theory of computation. Essentially, a pattern is a 
"representation as something simpler"; and simplicity need not necessarily be defined in terms of 
computation. Instead of Turing machines and binary sequences let us now consider pictures. 
Suppose that A is a one inch square black-and-white picture, and B is a five inch square picture 
made up of twenty-five non-overlapping copies of A. Intuitively, it is simpler to represent B as 
an arrangement of copies of A, than it is to simply consider B as a "thing in itself". Very roughly 
speaking, it would seem likely that part of the process of remembering what B looks like consists 
of representing B as an arrangement of copies of A.  

    This intuition may be expressed in terms of the definition of pattern. Where x and y are square 
regions, let:  

        y*1z denote the region obtained by placing y to the right of z  

y*2z denote the region obtained by placing y to the left of z  

        y*3z denote the region obtained by placing y below z  

        y*4z denote the region obtained by placing y above z.  

And, although this is obviously a very crude measure, let us define the complexity %x% of a 
square region with a black-and-white picture drawn in it as the proportion of the region covered 
with black. Also, let us assume that two pictures are identical if one can be obtained by a rigid 
motion of the other.  

    The operations *1, *2, *3 and *4 may be called simple operations. Compound operations are, 
then, compositions of simple operations, such as the operation (x*1w*2x)*4w. If y is a compound 
operation, let us define its complexity %y% to be the length of the shortest program which 
computes the actual statement of the compound operation. For instance, %(x*1w*2x)*4w% is 
defined to be the length of the shortest program which outputs the sequence of symbols 
"(x*1w*2x)*4w".       

    Where y is a simple operation and z is a square region, let y*z denote the region that results 
from applying y to z. A compound operation acts on a number of square regions. For instance, 
(x*1w*2x)*4w acts on w and x both. We may consider it to act on the ordered pair (x,w). In 
general, we may consider a compound operation y to act on an ordered set of square regions 
(x1,x2,...,xn), where x1 is the letter that occurs first in the statement of y, x2 is the letter that occurs 
second, etc. And we may define y*(x1,...,xn) to be theregion that results from applying the 
compound operation y to the ordered set of regions (x1,...,xn).  
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    Let us return to the two pictures, A and B, discussed above. Let q=A*1A*1A*1A*1A. Then, it 
is easy to see that B=q*4q*4q*4q*4q. In other words, B = 
(A*1A*1A*1A*1A)*4(A*1A*1A*1A*1A)*4(A*1A*1A*1A*1A)*4  

(A*1A*1A*1A*1A)*4(A*1A*1A*1A*1A). Where y is the compound operation given in the 
previous sentence, we have B=y*A.  

    The complexity of that compound operation, %y%, is certainly very close to the length of the 
program "Let q=A*1A*1A*1A*1A; print q*4q*4q*4q*4q". Note that this program is shorter than 
the program "Print (A*1A*1A*1A*1A)*4(A*1A*1A*1A*1A)*4 (A*1A*1A*1A*1A)* 

(A*1A*1A*1A*1A)*4(A*1A*1A*1A*1A)", so it is clear that the latter should not be used in the 
computation of %y%.  

    We have not yet discussed the term C(y,(B1,...,Bn)), which represents the amount of effort 
required to execute the compound operation y on the regions (x1,...,xn). For simplicity's sake, let 
us simply set it equal to the number of times the symbol "*" appears in the statement of y; that is, 
to the number of simple operations involved in y.  

    So, is (y,A) a pattern in B? Let us assume that the constants a, b and c are all equal to 1. We 
know y*A=B; the question is whether  

%y%+%A%+C(y,A) < %B%.  

    According to the above definitions, %y% is about 37 symbols long. Obviously this is a matter 
of the particular notation being used. For instance, it would be less if only one character were 
used to denote *1, and it would be more if it were written in binary code.  

    And C(y,z) is even easier to compute: there are 24 simple operations involved in the 
construction of B from A.  

    So we have, very roughly speaking, 37 + %z% + 24 < %x%. This is the inequality that must 
be satisfied if (y,z) is to be considered a pattern in x. Rearranging, we find: %z% < %x% - 61. 
Recall that we defined the complexity of a region as the proportion of black which it contains. 
This means that (y,z) is a pattern in x if and only if it the amount of black required to draw B 
exceeds amount of black required to draw A by more than 61. Obviously, whether or not this is 
the case depends on the units of measurement.  

    This is a very simple example, in that the compound operation y involves only one region. In 
general, we may define %(x1,...,xn)%=%x1%+...+%xn%, assuming that the amount of black in a 
union of disjoint regions is the sum of the amounts of black in the individual regions. From this it 
follows that (y,(x1,...,xn)) is a pattern in x if and only if a%y% + b(%x1%+...+%xn%) + 
cC(y,(x1,...,xn)) < %x%.  

    Results similar to these could also be obtained from a different sort of analysis. In order to 
deal with regions other than squares, it is desirable to replace *1, *2, *3, *4 with a single "joining" 
operation *, namely the set-theoretic union %. Let z=(x1,...,xn), let y be a Turing machine, let f be 
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a method for converting a picture into a binary sequence, let g be a method for converting 
abinary sequence into a picture. Then we have  

Definition 3.5: If x = x1 % x2 %...% xn, then (y,z,f,g) is a     pattern in x if 
a%y%+b%z%+c%f%+d%g%+eC(y,z,f,g) < %x%.  

We have not said how %f% and %g% are to be defined. This would require a detailed 
consideration of the geometric space containing x, which would take us too far afield. This 
general approach is somewhat similar to that taken in Chaitin (1978).  

ORDERS OF COMPLEXITY  

    It should be apparent from the foregoing that complexity and pattern are deeply interrelated. In 
this and the following sections, we shall explore several different approaches to measuring 
complexity, all of which seek to go beyond the simplistic KCS approach. Remember, according 
to the KCS approach, complexity means structurelessness. The most "random", least structured 
sequences are the most complex. The formulation of this approach was a great step forward. But 
the next step is to give formulas which capture more of the intuitive meaning of the word 
"complexity".  

    First, we shall consider the idea that pattern itself may be used to define complexity. Recall the 
geometric example of the previous section, in which the complexity of a black-and-white picture 
in a square region was defined as the amount of black required to draw it. This measure did not 
even presume to gauge the effort required to represent a black-and-white picture in a square 
region. One way to measure the effort required to represent such a picture, call it x, is to look at 
all compound operations y, and all sets of square black-and-white pictures (x1,...,xn), such that 
y*(x1,...,xn)=x. One may then ask which y and (x1,...,xn) give the smallest value of a%y% + 
b(%x1% + ... + %xn%) + c(y,(x1,...,xn)). This minimal value of a%y% + b(%x1%+...+%xn%) may 
be defined to be the "second-order" complexity of x. The second-order complexity is then be a 
measure of how simply x can be represented -- in terms of compound operations on square 
regions.  

    In general, given any complexity measure % %, we may use this sort of reasoning to define a 
complexity measure % %%.  

Definition 3.6: If % % is a complexity measure, % %% is the complexity measure  

    defined so that %x%% is the smallest value that the quantity a%y% + b%z% + cC(y,z) takes 
on, for any (y,z) such that y*z=x.  

    %x%% measures how complex the simplest representation of x is, where complexity is 
measured by % %. Sometimes, as in our geometric example, % % and % %% will measure very 
different things. But it is not impossible for them to be identical.       

    Extending this process, one can derive from % %% a measure % %%: the smallest value that 
the quantity  
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    a%y%% + b%z%% + cC(y,z)  

takes on, for any (y,z) such that y*z=x. %x%% measures the complexity of the simplest 
representation of x, where complexity is measured by % %%. It might be called second-order 
complexity. And from % %%, one may obtain a measure % %%, third-order complexity. It is 
clear that this process may be continued indefinitely.  

    It is interesting to ask when % % and % %% are equivalent, or almost equivalent. For 
instance, assume that y is a Turing machine, and x and z are binary sequences. If, in the notation 
given above, we let % %=% %T, then %x%% is a natural measure of the complexity of a 
sequence x. In fact, if a=b=1 and c=0, it is exactly the KCS complexity of x. Without specifying 
a, b and c, let us nonetheless use Chaitin's notation for this complexity: I(x).  

    Also, let us adopt Chaitin's notation I(v%w) for the complexity of v relative to w.  

Definition 3.7: Let y be a Turing machine program, v and w binary  

    sequences; then I(v%w) denotes the smallest value the quantity a%y%T+cCT(y,w) takes on for 
any self-delimiting program y that computes v when its input consists of w.  

    Intuitively, this measures how hard it is to compute v given complete knowledge of w.  

    Finally, it should be noted that % % and % %% are not always substantially different:  

Theorem 3.1: If %x%%=I(x), a=b=1, and c=0, then there is some K     so that for all x % 
%x%% - %x%%% < K.  

Proof: a%y%% + b%z%% + cC(y,z) = %y%% + %z%%. So, what is the  

    smallest value that %y%% + %z%% assumes for any (y,z) such that y*z=x? Clearly, this 
smallest value must be either equal to %x%%, or very close to it. For, what if %y%% + %z%% 
is bigger than %x%%? Then it cannot be the smallest %y%% + %z%%, because if one took z to 
be the "empty sequence" (the sequence consisting of no characters) and then took y to be the 
shortest program for computing x, one would have %z%%=0 and %y%%=%x%%. And, on the 
other hand, is it possible for %y%%+%z%% to be smaller than %x%%? If %y%%+%z%% were 
smaller than x, then one could program a Turing machine with a program saying "Plug the 
sequence z into the program y," and the length of this program would be less than %x%%, or at 
least greater than %x%% by no more than the length of the program P(y,z)="Plug the sequence z 
into the program y". This length is the constant K in the theorem.  

Corollary 3.1: For a Turing machine for which the program P(y,z)  

    mentioned in the proof is a "hardware function" which takes only one unit of length to 
program, % %%=% %%.  
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Proof: Both % %% and % %% are integer valued, and by the theorem, for any x,     %x%% % 
%x%% % %x%%+1.  

PATTERNS IN PATTERNS; SUBSTITUTION MACHINES  

     We have discussed pattern in sequences, and patterns in pictures. It is also possible to analyze 
patterns in other patterns. This is interesting for many reasons, one being that when dealing with 
machines more restricted than Turing machines, it may often be the case that the only way to 
express an intuitively simple phenomenon is as a pattern in another pattern. This situation will 
arise in our analysis of the perceptual hierarchy, several chapters down the road.  

    Let us consider a simple example. Suppose that we are not dealing with Turing machines, but 
rather with "substitution machines" -- machines which are capable of running only programs of 
the form P(A,B,C)="Wherever sequence B occurs in sequence C, replace it with sequence A". 
Instead of writing P(A,B,C) each time, we shall denote such a program with the symbol (A,B,C). 
For instance, (1,10001,1000110001100011000110001) = 11111. (A,B,C) should be read 
"substitute A for B in C".  

    We may define the complexity %x% of a sequence x as the length of the sequence, i.e. 
%x%=%x%T, and the complexity %y% of a substitution program y as the number of symbols 
required to express y in the form (A,B,C). Then, %1000110001100011000110001%=25, 
%11111%= 5, and %(10001,1,z)%=11. If z=11111, (10001,1,z)= 
1000110001100011000110001. For example, is (10001,1,z), 11111) a pattern in 
1000110001100011000110001? What is required is that  

    a(11) + b(5) + cC((10001,1,z),11111) < 25.  

If we take a=b=1 and c=0 (thus ignoring computational complexity), this reduces to  

    11 + 5 < 25.  

This is true, so it is indeed a pattern.  

    If we take c=1 instead of zero, and leave a and b equal to one, then it will still be a pattern, as 
long as the computational complexity of obtaining 1000110001100011000110001 from 
(10001,1,11111) does not exceed 9. It would seem most intuitive to assume that this 
computational complexity C((10001,1,z),11111) is equal to 5, since there are 5 1's into which 
10001 must be substituted, and there is no effort involved in locating these 1's. In that case the 
fundamental inequality reads  

    11 + 5 + 5 < 25,  

which verifies that a pattern is indeed present.  

    Now, let us look at the sequence x = 1001001001001001000111001 
1001001001001001001011101110100100100100100100110111 100100100100100100. 
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Remember, we are not dealing with general Turing machines, we are only dealing with 
substitution machines, and the only thing a substitution machine can do is plug one sequence in 
for another. Anythingwhich cannot be represented in the form (A,B,C), in the notation given 
above, is not a substitution machine.  

    There are two obvious ways to compute this sequence x on a substitution machine. First of all, 
one can let y=(100100100100100100,B,z), and z= B 0111001B1011101110B110111B. This 
amounts to recognizing that 100100100100100100 is repeated in x. Alternatively, one can let 
y%=(100,B,z%), and let z%= BBBBBB0111001BBBBBB1011101110BBBBBB 
110111BBBBBB. This amounts to recognizing that 100 is a pattern in x. Let us assume that 
a=b=1, and c=0. Then in the first case %y% + %z% = 24 + 27 = 51; and in the second case 
%y%% + %z%% = 9 + 47 = 56. Since %x% = 95, both (y,z) and (y%,z%) are patterns in x.  

    The problem is that, since we are only using substitution machines, there is no way to combine 
the two patterns. One may say that 100100100100100100 a pattern in x, that 100 is a pattern in 
x, that 100 is a pattern in 100100100100100100. But, using only substitution machines, there is 
no way to say that the simplest way to look at x is as "a form involving repetition of 
100100100100100100, which is itself a repetition of 100".  

    Let us first consider %x%%. It is not hard to see that, of all (y,z) such that y is a substitution 
machine and z is a sequence, the minimum of %y% + %z% is obtained when 
y=(100100100100100100,B,z), and z= B 0111001 B 1011101110 B 110111 B. Thus, assuming 
as we have that a=b=1 and c=0, %x%%=51. This is much less than %x%, which equals 95.  

    Now, let us consider this optimal y. It contains the sequence 100100100100100100. If we 
ignore the fact that y denotes a substitution machine, and simply consider the sequence of 
characters "(100100100100100100,B,z)", we can search for patterns in this sequence, just as we 
would in any other sequence. For instance, if we let y1=(100,C,z1), and z1=CCCCCC, then 
y1*z1=y, %y1%=10, and %z1%=6. It is apparent that (y1,z1) is a pattern in y, since %y1% + %z1% 
= 10 + 6 = 16, whereas %y% = 18. By recognizing the pattern (y,z) in x, and then recognizing 
the pattern (y1,z1) in y, one may express both the repetition of 100100100100100100 in x and the 
repetition of 100 in 100100100100100100 as patterns in x, using only substitution machines.  

    Is (y1,z1) a pattern in x? Strictly speaking, it is not. But we might call it a second-level pattern 
in x. It is a pattern in a pattern in x. And, if there were a pattern (y2,z2) in the sequences of 
symbols representing y1 or z1, we could call that a third-level pattern in x, etc.  

    In general, we may make the following definition:  

Definition 3.8: Let F be a map from SxS into S. Where a first-  

    level pattern in x is simply a pattern in x, and n is an integer greater than one, we shall say that 
P is an n'th-level pattern in x if there is some Q so that P is an n-1'th-level pattern in x and P is a 
pattern in F(Q).  
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    In the examples we have given, the map F has been the implicit map fromsubstitution 
machines into their expression in (A,B,C) notation.  

APPROXIMATE PATTERN  

    Suppose that y1*z1=x, whereas y2*z2 does not equal x, but is still very close to x. Say 
%x%=1000. Then, even if %y1%+%z1%=900 and %y2%+%z2%=10, (y2,z2) is not a pattern in x, 
but (y1,z1) is. This is not a flaw in the definition of pattern -- after all, computing something near 
x is not the same as computing x. Indeed, it might seem that if (y2,z2) were really so close to 
computing x, it could be modified into a pattern in x without sacrificing much simplicity. 
However, the extent to which this is the case is unknown. In order to incorporate pairs like 
(y2,z2), we shall introduce the notion of approximate pattern.  

    In order to deal with approximate pattern, we must assume that it is meaningful to talk about 
the distance d(x,y) between two elements of S. Let (y,z) be any ordered pair for which y*z is 
defined. Then we have  

Definition 3.9: The ordered pair (y,z) is an approximate pattern  

    in x if [ 1 + d(x,y*z) ][ a%y% + b%z% + cC(y,z) ] < %x%, where a, b, c and C are defined as 
in the ordinary definition of pattern.       

Obviously, when x=y*z, the distance d(x,y*z) between x and y*z is equal to zero, and the 
definition of approximate pattern reduces to the normal definition. And the larger d(x,y*z) gets, 
the smaller a%y%+b%z%+cC(y,z) must be in order for (y,z) to qualify as a pattern in x.  

    Of course, if the distance measure d is defined so that d(a,b) is infinite whenever a and b are 
not the same, then an approximate pattern is an exact pattern. This means that when one speaks 
of "approximate pattern", one is also speaking of ordinary, exact pattern.  

    Most concepts involving ordinary or "strict" pattern may be generalized to the case of 
approximate pattern. For instance, we have:  

Definition 3.10: The intensity of an approximate pattern (y,z) in x is          IN[(y,z)%x] = (%x%-
[1+d(x,y*z)][a%y%+b%z%+cC(y,z)])/%x%.  

Definition 3.11: Where v and w are binary sequences, the  

     approximate complexity of v relative to w, Ia(v,w), is the smallest value that 
[1+d(v,y*w)][a%y%+cC(y,w)] takes on for any program y with input w.  

    The incorporation of inexactitude permits the definition of pattern to encompass all sorts of 
interesting practical problems. For example, suppose x is a curve in the plane or some other 
space, z is a set of points in that space, and y is some interpolation formula which assigns to each 
set of points a curve passing through those points. Then Ia[(y,z)%x] is an indicator of how much 
use it is to approximate the curve x by applying the interpolation formula y to theset of points z.  
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3.3 Meaningful Complexity  

    Koppel [8] has recently proposed an alternative to the KCS complexity measure. According to 
Koppel's measure, the sequences which are most complex are not the structureless ones. Neither, 
of course, are they the ones with very simple structures, like 00000000000.... Rather, the more 
complex sequences are the ones with more "sophisticated" structures.  

    The basic idea [10] is that a sequence with a sophisticated structure is part of a natural class 
of sequences, all of which are computed by the same program. The program produces different 
sequences depending on the data it is given, but these sequences all possess the same underlying 
structure. Essentially, the program represents the structured part of the sequence, and the data the 
random part. Therefore, the "sophistication" of a sequence x should be defined as the size of the 
program defining the "natural class" containing x.  

    But how is this "natural" program to be found? As above, where y is a program and z is a 
binary sequence, let %y% and %z% denote the length of y and z respectively. Koppel proposes 
the following algorithm, defined with respect to a Turing machine that has two tapes instead of 
just one, a program tape and a data tape:  

1) search over all pairs of binary sequences (y,z) for which the two-tape     tape Turing machine 
with program y and data z computes x, and find those pairs for which %y% + %z% is smallest,  

2) search over all pairs found in Step 1, and find the one for which %y% is biggest. This value of 
%z% is the "sophistication" of x.  

All the pairs found in Step 1 are "best" representations of x. Step 2 searches all the "best" 
representations of x, and find the one with the most program (as opposed to data). This program 
is assumed to be the natural structure of x, and its length is therefore taken as a measure of the 
sophistication of the structure of x.  

    There is no doubt that the decomposition of a sequence into a structured part and a random 
part is an important and useful idea. But Koppel's algorithm for achieving it is conceptually 
problematic. Suppose the program/data pairs (y1,z1) and (y2,z2) both cause a Turing machine to 
output x, but whereas %y1%=50 and %z1%=300, %y2%=250 and %z2%=110. Since 
%y1%+%z1%=350, whereas %y2%+%z2%=360, (y2,z2) will not be selected in Step 1, which 
searches for those pairs (y,z) that minimize %y%+%z%. What if, in Step 2, (y1,z1) is chosen as 
the pair with maximum %y%? Then the sophistication of x will be set at %y1%=50. Does it not 
seem that the intuitively much more sophisticated program y2, which computes x almost as well 
as y1, should count toward the sophistication of x?  

    In the language of pattern, what Koppel's algorithm does is:  

1) Locate the pairs (y,z) that are the most intense patterns in x according     to the definition of 
pattern with % %, a=b=1, c=0  
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2) Among these pairs, select the one which is the most intense pattern in x     according to the 
definition of pattern with % %, a=1, b=c=0.  

It applies two different special cases of the definition of pattern, one after the other.  

    How can all this be modified to accommodate examples like the pairs (y1,z1), (y2,z2) given 
above? One approach is to look at some sort of combination of %y%+%z% with %y%. 
%y%+%z% measures the combined length of program and data, and %y% measures the length 
of the program. What is desired is a small %y%+%z% but a large %y%. This is some motivation 
for looking at (%y%+%z%)/%y%. The smaller %y%+%z% gets, the smaller this quantity gets; 
and the bigger %y% gets, the smaller it gets. One approach to measuring complexity, then, is to 
search all (y,z) such that x=y*z, and pick the one which makes (%y%+%z%)/%y% smallest. Of 
course, (%y%+%z%)/%y% = 1 + %z%/%y%, so whatever makes (%y%+%z%)/%y% smallest 
also makes %z%/%y% smallest. Hence, in this context, the following is natural:  

Definition 3.12: The crudity of a pattern (y,z) is %z%/%y%.  

    The crudity is simply the ratio of data to program. The cruder a pattern is, the greater the 
proportion of data to program. A very crude pattern is mostly data; and a pattern which is mostly 
program is not very crude. Obviously, "crudity" is intended as an intuitive opposite to 
"sophistication"; however, it is not exactly the opposite of "sophistication" as Koppel defined it.  

    This approach can also be interpreted to assign each x a "natural program" and hence a 
"natural class". One must simply look at the pattern (y,z) in x whose crudity is the smallest. The 
program y associated with this pattern is, in a sense, the most natural program for x.  

LOGICAL DEPTH  

    Bennett [9], as mentioned above, has proposed a complexity measure called "logical depth", 
which incorporates the time factor in an interesting way. The KCS complexity of x measures 
only the length of the shortest program required for computing x -- it says nothing about how 
long this program takes to run. Is it really correct to call a sequence of length 1000 simple if it 
can be computed by a short program which takes a thousand years to run? Bennett's idea is to 
look at the running time  of the shortest program for computing a sequence x. This quantity he 
calls the logical depth of the sequence.  

    One of the motivations for this approach was a desire to capture the sense in which a 
biological organism is more complex than a random sequence. Indeed, it is easy to see that a 
sequence x with no patterns in it has the smallest logicaldepth of any sequence. The shortest 
program for computing it is "Print x", which obviously runs faster than any other program 
computing a sequence of the same length as x. And there is no reason to doubt the hypothesis 
that biological organisms have a high logical depth. But it seems to us that, in some ways, 
Bennett's definition is nearly as counterintuitive as the KCS approach.  

    Suppose there are two competing programs for computing x, program y and program y'. What 
if y has a length of 1000 and a running time of 10 minutes, but y' has a length of 999 and a 
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running time of 10 years. Then if y' is the shortest program for computing x, the logical depth of 
x is ten years. Intuitively, this doesn't seem quite right: it is not the case that x fundamentally 
requires ten years to compute.  

    At the core of Bennett's measure is the idea that the shortest program for computing x is the 
most natural representation of x. Otherwise why would the running time of this particular 
program be a meaningful measure of the amount of time x requires to evolve naturally? But one 
may define the "most natural representation" of a given entity in many different ways. Bennett's 
is only the simplest. For instance, one may study the quantity dC(y,z) + e%z%/%y% + 
f(%y%+%z%), where d, e and f are positive constants defined so that d+e+f=3.     The 
motivation for this is as follows. The smaller %z%/%y% is, the less crude is the pattern (y,z). 
And, as indicated above, the crudity of a pattern (y,z) may be interpreted as a measure of how 
natural a representation it is. The smaller C(y,z) is, the less time it takes to get x out of (y,z). 
And, finally, the smaller %y%+%z% is, the more intense a pattern (y,z) is. All these facts 
suggest the following:  

Definition 3.13: Let m denote the smallest value that the quantity  

dC(y,z) + e%z%/%y% + f(%y%+%z%) assumes for any pair (y,z) such that x=y*z (assuming 
there is such a minimum value). The meaningful complexity of x may then be defined as the 
time complexity C(y,z) of the pattern (y,z) at which this minimum m is attained.  

    Setting d=e=0 reduces the depth complexity to the logical depth as Bennett defined it. Setting 
e=0 means that everything is as Bennett's definition would have it, except that cases such as the 
patterns (y1,z1), (y2,z2) described above are resolved in a more intuitive matter. Setting f=0 means 
that one is considering the time complexity of the most sophisticated -- least crude, most 
structured -- representation of x, rather than merely the shortest. And keeping all the constants 
nonzero ensures a balance between time, space, and sophistication.  

    Admittedly, this approach is not nearly so tidy as Bennett's. Its key shortcoming is its failure 
to yield any particular number of crucial significance -- everything depends on various factors 
which may be given various weights. But there is something to be said for considering all the 
relevant factors.  

3.4 Structural Complexity  

    We have discussed several different measures of static complexity, which measure rather 
different things. But all these measures have one thing in common: they work by singling out the 
one  pattern which minimizes some quantity. It is equally interesting to study the total amount of 
structure in an entity. For instance, suppose x and x% both have KCS complexity A, but whereas 
x can only be computed by one program of length A, x% can be computed by a hundred totally 
different programs of length A. Does it not seem that x% is in some sense more complex than x, 
that there is more to x% than to x?  

    Let us define the structure  of x as the set of all (y,z) which are approximate patterns in x, and 
denote it St(x). Then the question is: what is a meaningful way to measure the size of P(x). At 
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first one might think to add up the intensities [1+d(y*z,x)][a%y%+b%z%+cC(y,z)] of all the 
elements in P(x). But this approach has one crucial flaw, revealed by the following example.  

    Say x is a sequence of 10,000 characters, and (y1,z1) is a pattern in x with %z1%=70, 
%y1%=1000, and C(y1,z1)=2000. Suppose that y1 computes the first 1000 digits of x from the 
first 7 digits of z1, according to a certain algorithm A. And suppose it computes the second 1000 
digits of x from the next 7 digits of z1, according to the same algorithm A. And so on for the third 
1000 digits of z2, etc. -- always using the same algorithm A.  

    Next, consider the pair (y1,z1) which computes the first 9000 digits of x in the same manner as 
(y2,z2), but computes the last 1000 digits of x by storing them in z1 and printing them after the 
rest of its program finishes. We have %z2%=1063, and surely %y2% is not much larger than 
%y1%. Let's say %y2%=150. Furthermore, C(y2,z2) is certainly no greater than C(y1,z1): after all, 
the change from (y1,z1) to (y2,z2) involved the replacement of serious computation with simple 
storage and printing.  

    The point is that both (y1,z1) and (y2,z2) are patterns in x, but in computing the total amount of 
structure in x, it would be foolish to count both of them. In general, the problem is that different 
patterns may share similar components, and it is unacceptable to count each of these components 
several times. In the present example the solution is easy: don't count (y2,z2). But one may also 
construct examples of very different patterns which have a significant, sophisticated component 
in common. Clearly, what is needed is a general method of dealing with similarities between 
patterns.  

    Recall that Ia(v%w) was defined as the approximate version of the effort required to compute 
v from w, so that if v and w have nothing in common, Ia(v,w)=Ia(v). And, on the other hand, if v 
and w have a large commoncomponent, then both Ia(v,w) and Ia(w,v) are very small. Ia(v%w) is 
defined only when v and w are sequences. But we shall also need to talk about one program 
being similar to another. In order to do this, it suffices to assume some standard "programming 
language" L, which assigns to each program y a certain binary sequence L(y). The specifics of L 
are irrelevant, so long as it is computable on a Turing machine, and it does not assign the same 
sequence to any two different programs.  

    The introduction of a programming language L permits us to define the complexity of a 
program y as Ia(L(y)), and to define the complexity of one program y1 relative to another 
program y2, as Ia(L(y1)%L(y2)). As the lengths of the programs involved increase, the differences 
between programming languages matter less and less. To be precise, let L and L1 be any two 
programming languages, computable on Turing machines. Then it can be shown that, as L(y1) 
and L(y2) approach infinity, the ratios Ia(L(y1))/Ia(L1(y1)) and Ia(L(y1)%L(y2))/Ia(L1(y1)%L1(y2)) 
both approach 1.  

    Where z is any binary sequence of length n, let D(z) be the binary sequence of length 2n 
obtained by replacing each 1 in z with 01, and each 0 in z with 10. Where w and z are any two 
binary sequences, let wz denote the sequence obtained by placing the sequence 111 at the end of 
D(w), and placing D(z) at the end of this composite sequence. The point, as usual, is that 111 
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cannot occur in either D(z) or D(w), so that wz is essentially w juxtaposed with z, with 111 as a 
marker inbetween.  

    Now, we may define the complexity of a program-data pair (y,z) as Ia(L(y)z), and we may 
define the complexity of (y,z) relative to (y1,z1) as Ia(L(y)z%L(y1)z1). And, finally, we may 
define the complexity of (y,z) relative to a set of pairs {(y1,z1),(y2,z2),...,(yk,zk)} to be 
Ia(L(y)z%L(y1)z1L(y2)z2...L(yk)zk). This is the tool we need to make sense of the phrase "the total 
amount of structure of x".  

    Let S be any set of program-data pairs (x,y). Then we may define the size  %S% of S as the 
result of the following process:  

Algorithm 3.1:  

Step 0. Make a list of all the patterns in S, and label them     (y1,z1), (y2,z2), ..., (yN,zN).  

Step 1. Let s1(x)=Ia(L(y1)z1).  

Step 2. Let s2(x)=s1(x)+Ia(L(y2)z2)I(L(y1)z1).  

Step 3. Let s3(x)=s2(x)+Ia(L(y3)z3%L(y1)z1L(y2)z2))  

Step 4. Let s4(x)=s3(x)+Ia(L(y4)z4%L(y1)z1L(y2)z2L(y3)z3))  

...  

Step N. Let %S%=sN(x)=sN-1(x)+  

    Ia(L(yN)zN%L(y1)z1L(y2)z2)...L(yN-1)zN-1)  

      

At the k'th step, only that portion of (yk,zk) which is independent of {(y1,z1),...,(yk-1,zk-1)} is added 
onto the current estimate of %S%. For instance, in Step 2, if (y2,z2) is independent of (y1,z1), then 
this step increases the initial estimate of %S% by the complexity of (y2,z2). But if (y2,z2) is highly 
dependent on (y1,z1), not much will be added onto the first estimate. It is not difficult to see that 
this process will arrive at the same answer regardless of the order in which the (yi,zi) appear:  

Theorem 3.2: If Ia=I, the result of the above algorithm is invariant under permutation of the 
(yi,zi).  

    Where St(x) is the set of all patterns in x, we may now define the structural complexity of x 
to be the quantity %St(x)%. This is, I suggest, the sense of the word "complexity" that one uses 
when one says that a person is more complex than a tree, which is more complex than a 
bacterium. In a way, structural complexity measures how many insightful statements can 
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possibly be made about something. There is much more to say about a person than about a tree, 
and much more to say about a tree than a bacterium.  

ALGEBRA AND TOPOLOGY OF PATTERN SPACE  

    From the definition of structural complexity we may obtain the extremely useful notion of 
structural similarity, which we shall also refer to as pattern-distance. As the name suggests, 
this is a measure of how "close" two entities are, structurally speaking. We denote the structural 
similarity of x and y by d#(x,y), and define it as the structural complexity of the symmetric 
difference of St(x) and St(y). It measures the amount of pattern in x but not y, or in y but not x. 
This concept will play a central role in our treatment of memory and analogy.       

    The following concept, though it refers only to structure, not structural complexity, is equally 
essential.  

Definition 3.14: The emergence between x and y is defined as  

    Em(x,y) = St(xUy) - St(y) - St(y)  

    The intuitive meaning of emergence should be clear: it is what is present in the whole but not 
the parts. In the realm of pattern, the whole is in general more than the sum of the parts, in the 
sense that not all the patterns in the whole are patterns in the parts.  

    Finally, the following idea, though not so crucial, sheds some light into certain matters.  

Definition 3.15: (y1,z1) is said to be complementary to (y2,z2) in x tothefollowing extent:  

1 - IN(x,y1,z1)/[IN(L(y1),y2,z2) + IN(z1,y2,z2)]. If y1 is complementary to y2 in x and y2 is 
complementary to y1 in x, then y1 and y2 are said to be complementary in x.  

    Complementarity, intuitively, is a very weak form of negation. If y1 is highly complementary 
to y2 in x, that means that although one can effectively represent x in terms of either y1 or y2, 
once one has represented x in terms of y1, one cannot effectively represent the elements of this 
representation in terms of y2. If y1 and y2 are both entirely "independent" in St(x), this will 
usually be the case.  

    Crude intuitive examples of this phenomenon may be drawn from nearly any field of study. 
For instance, in quantum mechanics one may represent an electron as a wave or as a particle, but 
once one has represented it as either one cannot interpret one's representation in terms of the 
other one. Or: one may view the American economy as a battleground of class struggle, or as an 
arena of gradual evolution by natural selection through competition -- but once one has 
diagrammed the economy in terms of conflicting classes, one cannot analyze the diagram in 
Social Darwinist terms; and vice versa. Of course, these are little more than analogies; in order to 
make such applications at all precise one would have to provide exact definitions of the terms 
involved.  
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COMPUTABLE APPROXIMATIONS  

    The structural complexity of x is a measure of the total size of the set of all regularities in x. 
Unfortunately, as I noted above, it is uncomputable. Step 0 of Algorithm 3.1, in its full 
generality, is not programmable. Therefore, in order to apply the notion of structural complexity 
to real-world problems, it is necessary to restrict oneself to some particular class of patterns. One 
way to do this is via schematic structural complexity (SSC), a simple notion that will lead us 
naturally to more interesting complexity measures such as the Lempel-Ziv complexity and the 
n'th order Boolean complexities.  

    In the theory of genetic classifier systems (Goldberg, 1989), a schema is a sequence such as 
1001**1011101010*1**111, where * is a "don't care" symbol signifying that either a 0 or a 1 
may occupy the indicated place. Let us consider a slightly more general notion of schema, in 
which each "don't care" symbol has a tag (*1,*2, etc.), and each "don't care" symbol may stand 
for a binary sequence of any length. And let us define a schematizer as a function which maps 
schema into binary sequences, by inserting in place of each occurence of the "don't care" symbol 
*i some binary sequence wi. Each pair (schematizer, schema) is a schematic program; it defines 
a unique binary sequence.  

    The schematic structural complexity (from here on, SSC) of a binary sequence may be 
described in terms of Algorithm 3.1 with a modified initial step.  

Algorithm 3.2:  

Step 0'. Make a list of all schematic programs that are patterns in x, and label them y1,...,yN  

Steps 1-N. As in Algorithm 3.1  

The result of this algorithm may be called the schematic size  of x, the well-definition of which 
follows from the following generalization of Theorem 2.1.  

Theorem 3.1. The result of Algorithm 4.1 is invariant with respect to permutation of the yi.  

In analogy to structural complexity, the SSC of a sequence x may be defined as the schematic 
size of the set of all patterns in x, S(x).  

    A schematic program represents the simplest sort of compression: it compresses an image or 
sequence by abstracting repeated figures. A more flexible approach may be obtained by 
considering more general programs. For instance, one might define a metaschematizer as a map 
from schema to schema, which takes in a schema and replaces each occurence of the "don't care" 
symbol *i with some schema Si. A metaschematic program is then any program whose action 
may be represented in the form schematizer(m1(m2(...(mk(schema))...)), where the mi are 
metaschematizers.  

    Given this, one may define the "metaschematic structural complexity" of a sequence in an 
obvious way. This complexity measure recognizes not only repeated figures, but repeated figures 
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within repeated figures and so on. It is new in detail but not in concept -- it is a very close 
approximation to the Lempel-Ziv complexity (Lempel and Ziv, 1978).  

    The Lempel-Ziv complexity misses a great deal of structure. By definition, no computable 
approximation to the structural complexity can capture every type of structure. However, there is 
a large gap between repetitions and completely general patterns. One way to fill this gap is with 
the n'th order Boolean structural complexity. This complexity measure may be developed by 
analogy to the schematic and metaschematic structural complexities.  

    We will need to use vector Boolean operations, which act coordinatewise on Boolean 
sequences. For example the vector negation of 1010110 is 0101001; the vector conjunction of 
11010 and 01011 is 11011. And we will say that a Boolean function (of an arbitrary number of 
variables) is of order n if it can be written using less than n+1 disjunctions and conjunctions.  

    An n'th order Boolean schematic program for computing an array x may be defined as a 
pair (schema, schematizer), where the schema is a sequence composed of of 0's, 1's, unlabeled 
"don't care" symbols *, and k different labeled "don't care" symbols *1,...,*k. The schematizer 
consists of: 1) a memory, which consists of a set of l binary sequences, and 2) a collection of k 
vector Boolean functions f1,...,fk of order n, each of which takes exactly l sequences as 
arguments. The k'th array Boolean function computes the array to be substituted for the "don't 
care" symbol *i.  

    From the n'th order Boolean schematic programs one may obtain n'th order Boolean 
metaschematic programs  in a natural way. The n'th order Boolean structural complexity is then 
defined in terms of these programs, just as the metaschematic structural complexity is defined in 
terms of ordinary metaschematic programs. It should be clear that any pattern can be expressed 
as an n'th order Boolean schematic program for some n. Therefore, the n'th order Boolean 
programs are one way of forming a bridge between Lempel-Ziv complexity and general 
structural complexity.  

    These approximations are rather technical; they are not as conceptually elegant as the 
structural complexity itself. However, it is clear that at least the n'th order Boolean complexity is 
relevant to mentality, because no brain can compute Boolean functions of arbitrarily high order.  

 

  
 

4  

Intelligence and Mind  

      

4.0 The Triarchic Theory Of Intelligence  
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    Though there is a vast psychological literature on intelligence, it contains surprisingly few 
insights into the foundational questions which interest us here: what is intelligence, and how can 
it, practically or theoretically, be quantified? The problem is that, as Robert Sternberg has 
observed, theories of intelligence are not all theories of the same thing. Rather, they tend to be 
theories of different aspects of intelligence. To make matters worse, the theorists who propose 
these theories rarely make it clear just what aspects of intelligence their theories embrace (1987, 
p.141).  

    The psychology of intelligence has dwelled on the context-specific and the easily measurable. 
But transcending the bounds of particular contexts is what intelligence is all about; and there is 
no reason to expect this ability to be easy to gauge.  

    The confusion may be traced back to the turn of the century. First, Galton (1883) analyzed 
intelligence as a combination of various psychophysical abilities, everything from strength of 
grip to reaction time. And then, not too much later, Binet and Simon (1916) proposed that 
intelligence is a matter of problem solving, logical reasoning and spatial judgement. Binet's 
approach was of more immediate practical use -- it led to the I.Q. test, which is fairly good at 
predicting certain aspects of behavior; e.g. at predicting which children are capable of benefiting 
from schooling. But aspects of Galton's theory have recently been revived (Carroll, 1976; Jensen, 
1982). It is now clear that mental speed is closely connected with intelligence; and some modern 
psychologists (Hunt, 1978; Jensen, 1979) have advocated studying intelligence in terms of 
quantities such as speed of lexical access. Now it is recognized that the ideas of Galton and 
Binet, though at first glance contradictory, are on most important points complementary: they 
refer to different aspects of intelligence.  

    Just as modern psychology has integrated the ideas of Galton and Binet, Sternberg's "triarchic 
theory" proposes to synthesize several apparently contradictory currents in the contemporary 
psychology of intelligence. It seeks to understand the interconnections between: 1) the structures 
and processesunderlying intelligent behavior, 2) the application of these structures to the 
problem of attaining goals in the external world, and 3) the role of experience in molding 
intelligence and its application. Sternberg's triarchic theory is useful here, not because its details 
are particularly similar to those of the mathematical theory to be presented below, but rather 
because it provides a convenient context for relating this abstract mathematics with 
contemporary psychological research. The triarchic theory begins with mainstream psychology 
and arrives at the somewhat radical hypothesis that, although intelligence can be defined only 
relative to a certain context, there are certain universal structures underlying all intelligent 
behavior.  

STRUCTURES AND PROCESSES  

    In the triarchic theory, the structures and processes underlying intelligence are divided into 
three different categories: metacomponents, performance components, and knowledge-
acquisition components. From the point of view of internal structure, intelligence is understood 
as a problem-solving activity which is allocated specific problems from some external source.  
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    Metacomponents have to do with the high-level management of problem-solving: deciding on 
the nature of the problem with which one is confronted, selecting a problem-solving strategy, 
selecting a mental representation of the problem, allocating mental resources to the solution of 
the problem, monitoring problem-solving progress, and so on. Studies show that all of these 
factors are essential to intelligent performance at practical tasks (MacLeod, Hunt and Mathews, 
1978; Kosslyn, 1980; Hunt and Lansman, 1982).  

    Metacomponents direct the search for solutions; but they do not actually provide answers to 
problems. The mental structures which do this are called performance components. These are of 
less philosophical interest than metacomponents, because the human mind probably contains 
thousands of different special-case problem-solving algorithms, and there is no reason to suppose 
that every intelligent entity must employ the same ones. Most likely, the essential thing is to have 
a very wide array of performance components with varying degrees of specialization.  

    For example, consider a standard analogy problem: "lawyer is to client as doctor is to a) 
patient b) medicine". Solving this problem is a routine exercise in induction. Given three entities 
W, X and Y:  

1) the memory is searched for two entities W and X,  

2) a relation R(W,X) between the two entities is inferred from     the memory,  

3) the memory is searched for some Z so that R(Y,Z) holds  

This process is a performance component, to be considered in much more detail in the following 
chapter. It is not "low-level" in the physiological sense; it requires the coordination of three 
difficult tasks: locating entities in memorybased on names, inference of relations between 
entities, and locating entities in memory based on abstract properties. But it is clearly on a lower 
level than the metacomponents mentioned above.  

    Neisser (1983), among others, believes that the number of performance components is 
essentially unlimited, with new performance components being generated for every new context. 
In this point of view, it is futile to attempt to list the five or ten or one hundred most important 
problem solving algorithms; the important thing is to understand how the mind generates new 
algorithms. There is certainly some truth to this view. However, it may be argued that there are 
some relatively high-level performance components which are of universal significance -- for 
instance, the three forms of analogy to be discussed in the following chapter. These general 
algorithms may be used on their own, or in connection with the more specific procedures in 
which Neisser, Hunt (1980), Jensen (1980) and others are interested.  

    This brings us to the knowledge acquisition components of intelligence: those structures and 
processes by which performance components and metacomponents are learned. For example, 
three essential knowledge acquisition components are: sifting out relevant from irrelevant 
information, detecting significant coincidences (Barlow, 1985), and fusing various bits of 
information into a coherent model of a situation. These three abilities will be considered in detail 
in later chapters.  
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    The importance of effective knowledge acquisition for intelligence is obvious. The ability to 
speed-read will help one perform "intelligently" on an I.Q. test; and the ability to immediately 
detect anomalous features of the physical environment will help one perform intelligently as a 
detective. One might argue that factors such as this do not really affect intelligence, but only the 
ability to put intelligence to practical use. However, intelligence which is not used at all cannot 
be measured; it is hard to see how it could even be studied theoretically. The mathematical 
theory of intelligence to be given below provides a partial way around this dilemma by admitting 
that one part of a mind can be intelligent with respect to another part of the mind even if it 
displays no intelligent behavior with respect to the external environment.  

INTELLIGENCE AND EXPERIENCE  

    The experiential approach to intelligence begins with the idea that most behavior is "scripted" 
(Schank and Abelson, 1977). Most actions are executed according to unconscious routine; and 
strict adherence to routine, though certainly the intelligent thing to do in many circumstances, 
can hardly be called the essence of intelligence. It would rather seem that the core of intelligence 
is to be found in the learning of new scripts or routines.  

    For instance, one might focus on the rate at which newly learned scripts are "automatized". 
The faster a behavior is made automatic, the faster the mind will be free to focus on learning 
other things. Or one could study the ability todeal with novel situations, for which no script yet 
exists. Insight, the ability to synthesize appropriate new metacomponents, performance 
components and even knowledge acquisition components, is essential to intelligence. It has been 
extensively studied under the label "fluid intelligence" (Snow and Lohman, 1984).  

    The relevance of insight to tests such as the I.Q. test is a controversial matter (Sternberg, 
1985). It would seem that most I.Q. test problems involve a fixed set of high-level 
metacomponents, as well as a fixed set of performance components: analogical, spatial and 
logical reasoning procedures. In other words, in order to do well on an I.Q. test, one must know 
how to manage one's mind in such a way as to solve puzzles fast, and one must also have a 
mastery of a certain array of specialized problem-solving skills. However, in this example one 
sees that the dichotomy between metacomponents and performance components is rather coarse. 
It would seem that, to do well on an I.Q. test, one has to have a great deal of insight on an 
intermediate plane: on a level between that of specific problem-solving methods and that of 
overall management strategies. One must have a mastery of appropriate high-level and low-level 
scripts, and an ability to improvise intermediate-level behavior.  

INTELLIGENCE AND CONTEXT  

    One may look at intelligence as an array of structures and processes directed toward the 
solution of specific, externally given problems. One may understand intelligence as the learning 
of new structures and processes. Or -- third in Sternberg's triarchy -- one may hypothesize that  

        intelligent thought is directed toward one or more of three behavioral goals: adaptation to 
an environment, shaping of an environment, or selection of an environment. These three 
goals may be viewed as the functions toward which intelligence is directed: Intelligence is not 
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aimless or random mental activity that happens to involve certain components of information 
processing at certain levels of experience. Rather, it is purposefully directed toward the pursuit of 
these three global goals, all of which have more specific and concrete instantiations in people's 
lives. (1987, p.158)  

This contextual approach to intelligence has the advantage that it is not biased toward any 
particular culture or species.  

    For instance, Cole, Gay and Sharp (1971) asked adult Kpelle tribesmen to sort twenty familiar 
objects, putting each object in a group with those objects that "belonged" with it. Western adults 
tend to sort by commonality of attributes: e.g. knives, forks and spoons together. But Western 
children tend to sort by function: e.g. a knife together with an orange. The Kpelle sorted like 
Western children -- but the punchline is, when asked to sort the way a stupid person would, they 
sorted like Western adults. According to their culture, what we consider intelligent is stupid; and 
vice versa. By asking how well a personhas adapted to their environment, rather than how well a 
person does a certain task, one can to some extent overcome such cultural biases.  

    Sternberg distinguishes adaptation to an environment from shaping an environment and 
selecting an environment. In the general framework to be presented below, these three abilities 
will be synthesized under one definition. These technicalities aside, however, there is a serious 
problem with defining intelligence as adaptation. The problem is that the cockroach is very well 
adapted to its environment -- probably better adapted than we are. Therefore, the fact that an 
entity is well adapted to its environment does not imply that it is intelligent. It is true that 
different cultures may value different qualities, but the fact that a certain culture values physical 
strength over the ability to reason logically does not imply that physical strength is a valid 
measure of intelligence.  

    Sternberg dismisses this objection by postulating that  

        the components of intelligence are manifested at different levels of experience with tasks 
and in situations of varying degrees of contextual relevance to a person's life. The components of 
intelligence are... universal to intelligence: thus, the components that contribute to intelligence in 
one culture do so in all other cultures as well. Moreover, the importance of dealing with novelty 
and automatization of information processing to intelligence are... universal. But the 
manifestations of these components in experience are... relative to cultural contexts (1987, p. 
168).  

This is a powerful statement, very similar to one of the hypotheses of this book: that there is a 
universal structure of intelligence. However, psychology brings us only this far. Its conceptual 
tools are not adequate for the problem of characterizing this structure in a general, rigorous way.  

4.1 Intelligence as Flexible Optimization  

    Having just reviewed certain aspects of the psychological perspective on intelligence, it is 
worth observing how different the engineering perspective is. As one might expect, engineers 
have a much simpler and much more practical definition of intelligence.  
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    Control theory deals with ways to cause complex machines to yield desired behaviors. 
Adaptive control theory deals with the design of machines which respond to external and internal 
stimuli and, on this basis, modify their behavior appropriately. And the theory of intelligent 
control simply takes this one step further. To quote a textbook of automata theory (Aleksander 
and Hanna, 1976)  

        [An] automaton is said to behave "intelligently" if, on the basis of its "training" data which 
is provided within some context together with information regarding the desired action, it takes 
the correct action on other data within the same context not seen during training.  

This is the sense in which contemporary "artificial intelligence" programs are intelligent. They 
can generalize within their limited context: they can follow the one script which they are 
programmed to follow.  

    Of course, this is not really intelligence, not in the psychological sense. It is true that modern 
"intelligent" machines can play championship chess and diagnose diseases from symptoms -- 
things which the common person would classify as intelligent behavior. On the other hand, 
virtually no one would say that walking through the streets of New York requires much 
intelligence, and yet not only human beings but rats do it with little difficulty, but no machine yet 
can. Existing intelligent machines can "think" within their one context -- chess, medical 
diagnosis, circuit design -- but they cannot deal with situations in which the context continually 
shifts, not even as well as a rodent can.  

    The above quote defines an intelligent machine as one which displays "correct" behavior in 
any situation within one context. This is not psychologically adequate, but it is on the right 
track. To obtain an accurate characterization of intelligence in the psychological sense, one must 
merely modify their wording. In their intriguing book Robots on Your Doorstep, Winkless and 
Browning (1975) have done so in a very elegant way:  

        Intelligence is the ability to behave appropriately under unpredictable conditions.  

    Despite its vagueness, this criterion does serve to point out the problem with ascribing 
intelligence to chess programs and the like: compared to our environment, at least, the 
environment within which they are capable of behaving appropriately is very predictable indeed, 
in that it consists only of certain (simple or complex) patterns of arrangement of a very small 
number of specifically structured entities.  

    Of course, the concept of appropriateness is intrinsically subjective. And unpredictability is 
relative as well -- to a creature accustomed to living in interstellar space and inside stars and 
planets as well as on the surfaces of planets, or to a creature capable of living in 77 dimensions, 
our environment might seem just as predictable as the universe of chess seems to us. In order to 
make this folklore definition precise, we must first of all confront the vagueness inherent in the 
terms "appropriate" and "unpredictable."  

    Toward this end, let us construct a simple mathematical model. Consider two computers: S 
(the system) and E (the environment), interconnected in an adaptive manner. That is, let St 
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denote the state of the system at time t, and let Et denote the state of the environment at time t. 
Assume that St=f(St-1,Et-1), and Et=g(St-1,Et-1), where f and g are (possibly nondeterministic) 
functions characterizing S and E. What we have, then, is a discrete dynamical system on the set 
of all possible states SxE: an apparatus which, given a (system state, environment state) pair, 
yields the (system state, environment state) pair which is its natural successor. We need to say 
what it means for S to behave "appropriately", and what it means for E to be "unpredictable".  

4.2 Unpredictability  

    Intuitively, a system is unpredictable if a lot of information about its past state tends to yield 
only a little information about its future state. There are many different ways to make this 
precise. Here we shall consider four different definitions of unpredictability, three of them 
original.  

    Let us consider a discrete dynamical system (f,X), which consists of a "state space" X and a 
function f mapping X into X. For the details to follow, it should be assumed that X is a finite 
space, so that concepts of algorithmic complexity may be easily applied. But in fact, the ideas are 
much more general; they apply to any metric space X. A trajectory of the system (f,X) is a 
sequence (x,f(x),f2(x),...), where fn(x)=f(f(...f(x)...)), the n'th iterate of f applied to x.  

    In this notation, we may define the Liapunov sensitivity, or L.-sensitivity, of a dynamical 
system as follows:  

Definition 4.1: The L.-sensitivity K(a,n) of a dynamical system     (f,X) at a point x in X is 
defined as the average over all y so that d(x,y)<a of d(fn(x),fn(y)).  

The function K tells you, if you know x to within accuracy a, how well you can estimate fn(x).  

    Different choices of "averaging" function yield different definitions. The most common way 
of averaging two entities A and B is the arithmetic mean (A+B)/2, but there are other common 
formulas. For positive numbers such as we have here, there is the geometric mean (AB)1/2 and 
the power mean (Ap + Bp)1/p. In general, a function A which takes in n real numbers and puts 
out another is said to be an average if min(x1,...,xn) % A(x1,...,xn) % max(x1,...,xn) for all n-tuples 
of numbers x1 ,...,xn.  

    If the average of a set of n numbers is defined as the maximum element of the set, and X is not 
a discrete space but a space of real numbers or vectors, then in many cases it is known that 
K(a,n) is equal to a exp(L(x)n), where L(x) is called the "Liapunov exponent" of the dynamical 
system (Collet and Eckmann, 1980). Often the Liapunov exponent is independent of x, i.e. 
L(x)=L. This exponent has the advantage of being easily computable. But the maximum function 
is not always a reasonable choice of average: if one is interested in making a guess as to what 
fn(x) is probably going to be, then one wants an average which (like, say, the arithmetic mean) 
does not give undue emphasis to unlikely situations.  
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    To measure the sensitivity of a system, one merely averages the sensitivities at all points x in 
X. Here again, there is a choice to be made: what sort of average? But since we are speaking 
conceptually and not making explicit calculations, this need not bother us.  

Next, let us consider a form of unpredictability which has not previously been identified: 
structural sensitivity, or S-sensitivity.  

Definition 4.2: The S-sensitivity K(a,n) of a dynamical system (f,X) at a point     x in X is 
defined as the average over all y so that d(x,y)<a of      d#(xf(x)...fn(x),xf(x)...fn(x)).  

This measures how sensitively the structure of a trajectory depends on its initial point.  

    Conversely, one may also consider reverse structural sensitivity, or R.S.-sensitivity -- roughly, 
how sensitively the point a trajectory passes through at time n depends on the structure of the 
trajectory up to that point. To be precise:  

Definition 4.3: The R.S.-sensitivity K of a dynamical system (f,X) at a point x in X is defined as 
the average over all y so that  

d#(xf(x)...fn(x),xf(x)...fn(x))<a of d(fn(x),fn(y)).  

This is not so similar to L-sensitivity, but it has a simple intuitive interpretation: it measures how 
well, from observing patterns in the behavior of a system, one can determine its immediately 
future state.  

    Finally, let us define what might be called structural-structural sensitivity, or  

S.S.-sensitivity.  

Definition 4.4: The S.S.-sensitivity K(a,n,m) of a dynamical system (f,X) at a point x in X is 
defined as the average, over all y so that  

d#(xf(x)...fn(x),xf(x)...fn(x))< a, of  

d#(xf(x)...fn(x),xf(x)...fn(x)).  

This measures how difficult it is to ascertain the future structure of the system from its past 
structure.  

    What is essential here is that we are talking about the unpredictability of structure rather than 
the unpredictability of specific values. It doesn't matter how different two states are if they lead 
to similar structures, since (or so I will hypothesize) what the mind perceives is structure.  

    Theoretically, to measure the L.-, S.-, R.S.- or S.S.-sensitivity of a system, one merely 
averages the respective sensitivities at all points x in X. But of course, the word "measure" must 
be taken with a grain of salt.  
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The metric d# is, in general, an uncomputable quantity. For practical purposes, we must work 
instead with dC, the distance which considers only patterns in the computable set C. For example, 
C could be the set of all n'th order Boolean patterns, as discussed at the end of Chapter 3. If one 
replaces d# with dC in the above definitions, one obtains L.-, S.-, R.S.- and S.S.-sensitivities 
relative to C.  

    Estimation of the sensitivity of a system in these various senses could potentially be quite 
valuable. For instance, if a system were highly sensitive to initial conditions, but not highly 
structurally sensitive, then although one could not reasonably predict the exact future condition 
of the system, one would be able to predict the general structure of the future of the system. If a 
system were highly structurally sensitive but not highly S.S.-sensitive, then, although knowledge 
of the present state would tell little about the future structure, knowledge of the past structure 
would tell a lot. If a system were highly R.S.-sensitive but not highly S.S.-sensitive, then by 
studying the structure of a system one could reasonably predict the future structure but not the 
exact future state. The precise relation between the various forms of unpredictability has yet to 
be explored, but it seems likely that all these combinations are possible.  

    It seems to me that the new sensitivity measures defined here possess a very direct relation to 
unpredictability as it occurs in real social, psychological and biological situations -- they speak 
of what studying a system, recognizing patterns in it, can tell about its future. L.-sensitivity, on 
the other hand, has no such connection. L.-sensitivity -- in particular, the Liapunov exponent -- is 
profoundly incisive in the analysis of intricate feedback systems such as turbulent flow. 
However, speaking philosophically, it seems that when studying a system containing feedback 
on the level of structure as well as the level of physical parameters, one should consider 
unpredictability on the level of structure as well as the level of numerical parameters.  

    In conclusion, I would like to make the following conjecture: that when the logic relating self-
organization with unpredictability is untangled, it will turn out that real highly self-organizing 
systems (society, the brain, the ecosystem, etc.) are highly Liapunov sensitive, structurally 
sensitive and R.S.-sensitive, but are not nearly so highly S.S.-sensitive. That is: roughly 
speaking, it should turn out that by studying the structure of the past, one can tell something 
about the structure of the future, but by tracking or attempting to predict specific events one will 
get nowhere.  

4.3 Intelligence as Flexible Optimization, Revisited  

    As above, let us consider dynamical systems on spaces SxE, where S is the state space of a 
system and E is the set of states of its environment. Such dynamical systems represent 
coevolving systems and environments.  

    We shall say that such a dynamical system contains an S.-sensitive environment to extent e if 
it is S.-sensitive to degree at least e for every system S; and so forth for L., R.S. and S.S.-
sensitivity. One could modify this approach in several ways, for instance to read "for almost any 
system S," but at this stage such embellishments seem unnecessary. This concept addresses the 
"unpredictable conditions" part of our definition of intelligence: it says what it means for a 
system/environment dynamic to present a system with unpredictable conditions.  
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    Next we must deal with "appropriateness". Denote the appropriateness of a state St in a 
situation Et-1 by A(St,Et-1). I see no reason not to assume that the range of A is a subset of the 
real number line. Some would say that A should measure the "survival value" of the system state 
in the environment; or, say, the amount of power that S obtains from the execution of a given 
action. In any case, what is trivially clear is that the determination of appropriate actions may be 
understood as an optimization problem.  

    One might argue that it is unfair to assume that A is given; that each system may evolve its 
own A over the course of its existence. But then one is faced with the question: what does it 
mean for the system to act intelligently in the evolution of a measure A? In the end, on some 
level, one inevitably arrives at a value judgement.  

    Now we are ready to formulate the concept of intelligence in abstract terms, as "the ability to 
maximize A under unpredictable conditions". To be more precise, one might define a system to 
possess S-intelligence with respect to A to degree %%h%% if it has "the ability to maximize A 
with accuracy g in proportion b of all environments with S-sensitivity h(a,b,c)=abc and %% %% 
is some measure of size, some norm. And, of course, one might define L.-, R.S.- and S.S.-
intelligence with respect to A similarly.  

    But there is a problem here. Some functions A may be trivially simple to optimize. If A were 
constant then all actions would be equally appropriate in all situations, and intelligence would be 
a moot point. One may avoid this problem as follows:  

Definition 4.5: Relative to some computable set of patterns C, a system S possesses S.-
intelligence to a degree equal to the maximum over all A of the product [S.-intelligence of S with 
respect to A, relative to C]*[computational complexity of optimizing A]. L., R.S., and S.S.-
intelligence may be defined similarly.  

    This, finally, is our working definition of intelligence. In terms of Sternberg's triarchic theory, 
it is essentially a contextual definition. It characterizes the intelligence of a given entity in terms 
of its interactions with its particular environment; and what is intelligent in one environment may 
be unintelligent in another. Unfortunately, at present there is no apparent means of estimating the 
intelligence of any given entity according to this definition.  

    For simplicity's sake, in the following discussion I will often omit explicit reference to the 
computable set C. However, it is essential in order that intelligence be possible, and we will 
return to it in the final chapter. Anything that is done with d# can also be done with dC.  

    I believe that high S.S. intelligence is, in general, impossible. The reason for this is that, as 
will become clear in the Chapter 9, perception works by recognizing patterns; so that if patterns 
in the past are no use in predicting patterns in the future, mind has no chance of predicting 
anything. I suggest that intelligence works by exploiting the fact that, while the environment is 
highlyL., S.- and R.S.-sensitive, it is not highly S.S.-sensitive, so that pattern recognition does 
have predictive value.  
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    The master network, described in Chapter 12, is a system S which is intended to produce a 
decent approximation to appropriate behavior only in environments E for which the relevant 
dynamical system on SxE is not extremely S.S.-sensitive -- and not even in all such 
environments. It is hypothesized to be a universal structure among a certain subset of L., S.- and 
R.S.-intelligent systems, to be specified below. Thus, a more accurate title for this book would be 
The Structure of Certain Liapunov, Structural and Reverse Structural Intelligent Systems.  

    In other words: roughly speaking, the main goal of the following chapters is to explore the 
consequences of the contextual definition of intelligence just given -- to see what it implies about 
the structure and experiential dynamics of intelligence. To be more precise about this, we shall 
require a bit more formalism.  

4.4 Mind and Behavior  

    Let S be any system, as above. Let it and ot denote the input to and output of S at time t, 
respectively. That is, ot is that part of St which, if it were changed, could in certain circumstances 
cause an immediate change in Et+1; and it is that part of Et which, if it were changed, could in 
certain circumstances cause an immediate change in St+1.  

    Then we may define the behavioral structure  of an entity S over the interval (r,s) as the fuzzy 
set B[S;(ir,...,is)] = {Em(ir,or+1),Em(ir+1,or+2),...,Em(is,os+1), 
St[Em(ir,or+1),Em(ir+1,or+2),...,Em(is,os+1)]}. This is a complete record of all the patterns in the 
behavior of S over the interval (r,s).  

    Then what is a model of S, on the interval (r,s)? It is a function MS so that B[MS;(ir,...,is)] is as 
close to B(S;(ir,...,is)] as possible. In other words, a good model is a simple function of which one 
can say "If S worked like this, it would have behaved very much the same as it actually did."  

    In order to specify what is meant by "close", one might define the magnitude  of a fuzzy set Z, 
%%Z%%, as the sum over all z of the degree to which z is an element of z. Then, %%Y-Z%% 
will be a measure of the size of the total difference between two fuzzy sets Y and Z.  

    For instance, assume MS is a Turing machine program; then the best model of S might be 
defined as the function MS which minimized %MS%*%%B[MS;(ir,...,is)]-B[S,(ir,...,is)]%%, where 
%MS% denotes the size of MS(perhaps (Ms)=%L(Ms)%T).  

    In general, one good way to go about finding models is to look for functions Y so that 
%Y%*%%[Y(S(ip)),...,Y(S(iq))]-[S(op+1),...,S(oq+1)]%% is small on some interval (p,q). Such 
functions -- simple models of the structures of particular behaviors -- are the building blocks out 
of which models are made. Combining various such functions can be a serious problem, so that it 
may not be easy to find the best model, but it is a well-defined problem.  

    That takes care of behavior. Now, what about mind? Let us define the structure  St[S;(r,s)] of 
a system S on the interval (r,s) as the set of patterns in the ordered set [Sr,...,Ss], where St, as 
above, denotes the state of S at time t. This is the actual structure of the system, as opposed to 
B[S;(r,s)], which is the structure of the system's behavior. In the case where S is a human or 
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some other organism, through psychology we only have access to B[S;(r,s)], but through biology 
we can also study St[S;(r,s)].      

    We may define a mind as the structure of an intelligent system. This means that a mind is not 
a physical entity but rather a Platonic, mathematical form: a system of functions. Mind is made 
of patterns rather than particles.  

    The central claim of this book is that a certain structure, the master network, is part of the 
mind of every intelligent entity. One might make this more precise in many ways. For instance, 
define the general intelligence of a system to be the average of its R.S.-intelligence, its S.-
intelligence, and its L.-intelligence. Then I propose that:  

Hypothesis 4.1: There is a high correlation coefficient between     1) the degree with which the 
master network is an element of St[S;(r,s)], and 2) general intelligence.  

If this is too much to believe, the reader may prefer a weaker statement:  

Hypothesis 4.2: If A is more L.-, S.- and R.S.-intelligent than     B, the master network is almost 
never less prominent in A than in B.  

These hypotheses will be considered again in Chapter 12, once the master network has been 
described in detail.  

 

5  

Induction  

5.0 Justifying Induction  

    After reading a certain amount of philosophy, it is easy to become confused as to exactly what 
the problem of induction is. For our purposes, however, the problem of induction is very simple 
and straightforward. Why is it justified for a system to assume that a pattern it has observed in its 
environment or itself will continue to be a pattern in its environment or itself in the future?  

    Leibniz (1704) was the first major philosopher to comprehend the seriousness of the problem 
of induction. He did not presume to have solved it, but rather claimed to have a research 
programme which would eventually lead to its solution. His "Universal Characteristic" was to be 
a systematization of all human knowledge in mathematical form, in such a way that the various 
possible answers to any given question could be assigned precise probabilities based on the 
background knowledge available.  

    But although Leibniz made important advances, Hume (1739) was the first to give the 
problem of induction its modern form. He gave a sequence of brilliant arguments to the effect 
that human knowledge is, in fact, induction. For instance, he spent a great deal of effort 
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demonstrating that the "fact" that one thing causes another, say that fire causes smoke, is 
"known" to us only in the sense that we have seen it do so consistently in the past, and therefore 
assume it will continue to do so in the future. At the time this was an largely novel insight into 
the nature of human knowledge. The crux of his analysis of induction was his argument that it is 
fundamentally unjustifiable; however, without the conception of knowledge as inductive, his 
clever insight in this regard would have been meaningless.  

    After all -- to summarize and simplify Hume's argument -- how do we knowinduction works? 
Either we know it by "divine revelation" or "deduction" or some other principle which has 
nothing to do with the specific properties of the real world, or we know it because of some 
reasoning as to specific properties of the real world. If the latter, then how do we know these 
specific properties will continue into the future? This assumption is itself an act of inductive 
reasoning! So the two alternatives are: justify induction by some a priori principle unconnected 
with the real world, or justify induction by induction. And the latter is inadmissible, for it is 
circular reasoning. So induction is just another form of dogmatism.  

    I take it for granted that Hume was right -- induction is unjustifiable. But nonetheless, we 
execute inductions every day. As I see it, the practical problem of induction is the problem of 
coming up with a simple, general, useful model of the universe according to which induction is 
indeed possible. This is quite distinct from the philosophical problem of induction. In solving the 
practical problem, we are permitted to justify induction in terms of some principle divorced from 
observable reality. The objective is to find the best way of doing so.  

A SIMPLE EXAMPLE  

    Consider the sequence 1010101010.... Given no background knowledge except that there will 
indeed be a next term, and that it will be either 0 or 1, simple intuitive inductive reasoning 
indicates that the next term should be a 1. One reasons: "Every time a 0 has occurred, it has been 
followed by a 1; hence with probability 1 this 0 is followed by a 1."  

    Similarly, given the sequence 010101001010101010... and the same minimal background 
information, one could reason: "Eight out of the nine times a 0 has occurred, it has been followed 
by a 1; hence with probability 8/9 this zero is followed by a 1."  

    But this sort of reasoning is, of course, plagued by serious problems. It makes the implicit 
assumption that the probability distribution of 0's and 1's will be the same in the future as it 
was in the past. So it makes an inductive assumption, an assumption as to the "regularity" of the 
world. There is no "a priori" reason that such assumptions should be justified -- but we 
intuitively make them, and they seem to work fairly well.  

INDUCTION AND DEDUCTION  

    Many people would be willing to accept logical deduction on faith, and justify induction in 
terms of deduction. This would be one way of solving the practical problem of induction; 
unfortunately, however, it doesn't seem to work. Even if one does take it on faith that the 
universe is constituted so that the familiar rules of deductive logic are valid, there is no apparent 
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way of solving thepractical problem of induction. The rules of deductive logic give no reason to 
assume that the regularities of the past will continue into the future.  

    In one sense this is a technical point, regarding the specific forms of deductive logic now 
known. It might be argued that we simply don't know the true deductive logic, which would 
justify induction. But that is not a very convincing argument; it is certainly not something on 
which to base a theory of mind.  

    And modern physics has added a new wrinkle to this controversy. In 1936, Von Neumann and 
Birkhoff proposed that a special non-classical "quantum logic" is required for the analysis of 
microscopic phenomena. Over the past few decades this suggestion has evolved into a 
flourishing research programme. Mittelstaedt (1978) and other quantum logicians contend that 
the choice of a deductive system must be made inductively, on the basis of what seems to work 
best for describing reality -- that what we call logic is not absolute but rather a product of our 
particular physical experience. If one accepts this postulate, then clearly there is no point in 
trying to justify induction deductively, for this would be just as circular as justifying induction 
inductively.  

5.1 The Tendency to Take Habits  

    The American philosopher Charles S. Peirce founded a vast philosophical system on the 
principle of "the tendency to take habits." By this he meant, roughly, the following:  

Peirce's Principle: Unless restrained by the extension of another habit, a habit will tend to 
extend itself.  

Here "extend" is taken to refer to both space and time, and "habit" is essentially synonymous 
with "pattern." In a way this is a distant relative of Newton's First Law of Motion: unless 
somehow obstructed, an object will travel in a straight line.  

    Peirce never seriously sought a proof of this principle; he considered it primary and 
irreducible. He did, however, provide an amusing cosmogonic argument, which begins with the 
assumption that, out of the primordial void, various habits emerged at random, with extremely 
small intensities. Once the tendency to take habits comes into existence to an indefinitely small 
degree, he argued, then by the tendency to take habits the particular habit which is the tendency 
to take habits is extended -- et cetera. Hence the tendency to take habits is strengthened, and 
hence more and more habits which emerge to a miniscule degree will be extended, and this 
constitutes an extension of the tendency to take habits, and hence the tendency to take habits will 
be further extended -- et cetera.  

    Clearly, this sort of reasoning -- though intriguing -- contains all sorts of hidden assumptions; 
and there is not much point in debating whether or not itis really a "justification" of Peirce's 
principle. It is best to take the simpler path and assume Peirce's principle outright.  

    I will assume, first of all, that "a pattern tends to extend itself through time". This does not 
imply that all patterns continue indefinitely through time; this is obviously absurd. Merely a 
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tendency is posited: merely that, given that a pattern X has occurred in the past, the probability 
that X occurs in the future is greater than it would be if the events at each time were determined 
with no reference whatsoever to previous events. Roughly speaking, this is equivalent to the 
hypothesis that the environment is self-organizing.  

    Clearly, this assumption requires that the world, considered as a dynamical system, is not 
highly S.S.-sensitive. If the world were highly S.S.-sensitive, then one would need essentially 
complete knowledge regarding the structure of the past world in order to predict the structure of 
the future world. But if the world possessed the tendency to take habits, then there would be a 
good chance the patterns one recognized would be continued to the future, thus limiting the 
possible degree of S.S.-sensitivity. This relationship can be spelled out in a precise inequality; 
but there seems little point. The basic idea should be clear.     Conversely, one might wonder: 
does low S.S.-sensitivity inherently imply low tendency to take habits? It seems not. After all, 
low S.S.-sensitivity implies that it is possible to compute future structure from past structure, not 
that future structure is similar to past structure.  

    It may be worth phrasing this distinction more precisely. The structure of a dynamical system 
over an immediately past interval of time (the "past structure") does not, in general, determine 
the structure of the system over an immediately future interval of time (the "future structure"). 
But the past structure does place certain constraints upon the future structure; it enforces a 
certain probability distribution on the set of all future structures. That is to say, future structure is 
dependent upon past structure according to some stochastic function F. Then, all low S.S.-
sensitivity says is that, if X and Y are close, F(X) and F(Y) are reasonably close (here X and Y 
are structures, i.e. sets of patterns). But what the tendency to take habits says is that X and F(X) 
are reasonably close. From this it is apparent that the tendency to take habits implies low S.S.-
sensitivity, but not vice-versa.  

    Let us return to our previous example. In the case of 0101010101010..., the tendency to take 
habits translates the assumption that the next term will be a 0 into the assumption that the pattern 
x=y*z will be continued, where x is the sequence involved, y is the function f(A)=AAA...A 
which juxtaposes A n times, * is function evaluation, and z=01. Clearly %y%, %z% and C(y,z) 
are rather small, so that this will be a pattern in reasonably short sequences of the form 
0101010101010.... It is also important to note that, in the case 0101010010101010..., the most 
natural application of the tendency to take habits involves the same y and z as above, but in this 
case as an approximate pattern. One might consider d(y*z,x)=1, since y*z may be changed into 
x by one insertion.  

    I have not yet been any more specific than Peirce as to what "the tendencyto take habits" 
actually is. Clearly, if one saw the sequence 0101010101010... in reality, one might or might not 
assume that, by induction, the next term was a 1. It would depend on context. For instance, if one 
were receiving such numbers as output from a computer program, and the last twelve outputs one 
had received were all either 0101010101000 or 1010101010111, then having seen 01010101010 
one would probably assume the next term was going to be a 0. Obviously, this is also induction; 
one is merely inducing relative to a larger data set. What the tendency to take habits, properly 
formulated, should tell us is that given no other relevant knowledge, one should assume a 
given pattern will continue, because there is a certain tendency for patterns to continue, and if 
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one does not assume this there is nothing to do but assume a uniform distribution on the set of 
possible outcomes. When two patterns are in competition -- when they cannot both continue -- 
then one must make a decision as to which one to assume will continue.  

    This example might be taken to suggest that the pattern based on the largest data set is always 
the best bet. But this is not the case. For what if one's computer outputs the following five 
sequences: 9834750940, 2345848530, 0000000000, 9875473890, 1010101010. Then when one 
sees for the sixth output 010101010, what is one to assume will be the last term? Does one 
follow the pattern extending over all five of the prior inputs, that all sequences end in 0? Or is 
one to obey the internal logic of the sequence, bolstered by the fact that the fifth sequence, with a 
very similar structure, and the third sequence, with a fairly similar structure, were each continued 
in a way which obeyed their internal logic? According to my intuition, this is a borderline case.  

    One could concoct a similar example in which the clear best choice is to obey the structure of 
the individual sequence. Indeed, if one simply replaced the final digit of the first sequence with a 
1, then ending in 0 might still be an approximate pattern, but according to my intuition the best 
guess for the next term of the sixth sequence would definitely be 1.  

    If nothing else, the examples of the previous paragraph demonstrate that the choice of pattern 
is a matter of intuition. The tendency to take habits is a powerful, but it doesn't tell you what to 
assume when experience or logic tells you that two patterns, both historically prominent, cannot 
both occur. And the case of two contradictory patterns is a relatively simple one: in reality, every 
mind has recognized a huge set of patterns, each one contradicting numerous others.  

    In order to resolve this dilemma, I will propose a strengthening of Peirce's formulation of the 
tendency to take habits. I suggest that, when it possesses little or no information indicating the 
contrary, an intelligence should assume that the most intense of a group of contradictory patterns 
will continue. This strategy can only work, of course, if the universe operates according to the 
following special principle:  

Strengthened Peirce's Principle: A pattern tends to continue,     and the more intense a pattern 
it is, the more likely it is to continue.  

    This principle does not say how much more likely. But in general, a mind may want to 
consider the probability of a given pattern occurring in the future. In that case, it would need to 
know the exact nature of the relation between intensity and chance of continuance. One might 
think that this relation could be determined by induction, but this would lead to circular 
reasoning, for the execution of this induction would require some assumption as to the nature of 
this induction. At some level one must make an a priori assumption.  

    In sum: I have not attempted to "justify" induction; I have rather placed a condition on the 
universe under which a certain form of induction will generally be effective. This condition -- the 
strengthened Peirce's principle -- rules out high S.S.-sensitivity but not high L.- S.- and R.S.-
sensitivity, and it is not implied by low S.S.-sensitivity. It is clear that, in a universe obeying the 
strengthened Peirce's principle, a system can achieve a degree of intelligence by recognizing 
patterns  and assuming that they will continue.  
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    This idea makes sense no matter how complexity is defined; it relies solely on the definition of 
pattern. But if one restricts attention to Turing machines, and considers complexity to mean KCS 
complexity, then the present approach to induction becomes extremely similar to the "classical" 
proposal of Solomonoff (1964). His paper, "A Formal Theory of Induction," was one of the three 
original sources of the KCS complexity. His essential idea was a mathematical form of Occam's 
razor: the simplest explanation is the one most likely to be correct. He took this as a given, 
defined an explanation of a binary sequence as a program computing it, and went on to construct 
the KCS complexity as a measure of simplicity.  

5.2 Toward A General Induction Algorithm  

    The strengthened Peirce's principle is only a beginning. It is a basic philosophical assumption 
which ensures the possibility of intelligence through pattern recognition. All the standard 
mathematical methods for predicting the future are based on probability theory. In this section I 
will show that it is indeed possible to combine prediction based on pattern with prediction based 
on probability. Most of the ideas here are completely straightforward, and the reader who prefers 
to avoid mathematical formalism will lose little by skimming over this section.  

    From the abstract philosophical point of view, this approach may be controversial; it assumes 
that elementary probability theory works, and probability is a troublesome concept. This 
difficulty will be discussed in Chapter 9, in a different context. For now, let us simply apply the 
theory of probability without worrying about justifications.  

    Let P(X) denote the probability that the proposition X is true; let P(X%E) denote the 
probability that X is true given that the proposition E is true. Recall that P(X%E)=P(XE)/P(E), 
unless P(E)=0. Let us consider events Yi of the form "Pattern Pj is present in the environment to 
intensity Kl over time period(t,v)", where j and K are integers, and set pi=P(Yi). If there are n 
patterns and O%K<M, then there will be N=nM events Yi. Essentially, the task of making a 
coherent model may be summarized as follows. Where t denotes the present time, let Qs denote 
the proposition "Patterns Qs1, Qs2,..., Qsn have been observed during the interval [t-s,t] with 
respective intensities Ks1,...,Ksn". The question is: what is P(Yi%Qs), for each s? Strictly 
speaking, this is a different problem for each s. However, the knowledge generated in solving it 
for, say, s=1000, would obviously be useful in solving it for s=1100, 2000, or 10000. In general, 
the larger s is, the harder the problem is, since there will be more Qj.  

    The estimation of the probabilities P(Yi%Qs) is a very difficult problem. Probably there will 
always be a need for rough heuristics. But still, a more detailed analysis can lend some insight 
into what is involved. {Qsj} is the set of patterns observed in the time interval [t-s,t]. Let us 
assume that all the possible combinations of elements of {Qsj} have been listed in some specified 
order, and that {Qsj(k,1), Qsj(k,2),...} refers to the k'th one. Then for any v, and any u between s+v 
and t, we may introduce a set of propositions, {Ruvk}, which includes all propositions of the form 
"Qsj(k,1) and Qsj(k,2) and ... have been observed during (u-v,u) with respective intensities Ksj(k,1), 
Ksj(k,2),...." And, finally, we may define Ps(Ruvk) as the result of applying Algorithm 3.1 to the set 
of patterns referred to by Ruvk [in the notation of that algorithm, let Qsj(k,1)=(y1,z1), etc.]. 
According to the strengthened Peirce's principle, this indicates how likely it is for the k'th 
conjunction of patterns to occur.  
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    So, in this framework, estimating P(Yi%Qs) comes down to first using the Ps(Ruvk) to estimate 
a set of most likely future scenarios, a set of subsets of {Qsi} which are intense enough and 
mutually consistent enough to be plausible; and second, using the Ps(Ruvk) to estimate the 
P(Yi%Qsj) for those Qsj in this future scenario.  

    The second part, estimating the P(Yi%Qsj), is relatively tractable; it doesn't require all the 
Ps(Ruvk), but only the relatively miniscule subset involving conjunctions of the form PjQl, where 
Ql is an element of some Qsj and Pj is the pattern to which the proposition Yi refers. In practice an 
intelligent system would probably have to forego the testing of all the Yi, and for those Yi which 
it selected to test it would have to ignore some of the conjunctions PjQl. For those Yi and Qsj 
selected, it would simply have to use the formula P(Yi%Qsj)=P(YiQsj)/P(Qsj).  

    Unfortunately, the task of choosing a set of most likely futures, is far, far less palatable. This is 
a very difficult optimization problem, and what's worse, in general it refers to the entire set of 
Ps(Ruvk). The array {Ruvk} is so large that no conceivable intelligence could ever compute it for a 
situation involving a realistic number of patterns. So in order for intelligent prediction to be 
possible, some sort of very rough approximation method is required.  

    Let's assume -- for reasons that will become clear in later chapters -- that certain patterns in Qs 
have been labeled as important. By what process doesn't matter right now. Define the 
prominence of a pattern as the product of its intensity with its importance. Then one rough 
approximation algorithm is asfollows. Consider perhaps seven different values of s -- e.g. a 
second, a minute, an hour, a day, a week, a year, a lifetime -- and seven different values of v. For 
each of these values of s, start with, say, the seven most prominent patterns, and consider all the 
various combinations of them. Estimate for each of these 896 combinations the appropriate 
average over all u of Ps(Ruvk), where v runs through all seven values. For each v retain the seven 
which yield the highest numbers (there could be some repetition in this set if the same pattern 
were prominent on two different time scales). Then, for each v, for each of these seven patterns 
P, consider all the combinations of P with the six next most prominent patterns in Qs (where s 
corresponds to the time scale on which P was selected as prominent). For each of these 
combinations, compute the appropriate average over all u of Ps(Ruvk) (where v corresponds to the 
time scale according to which the initial element of Ruvk was retained). Select the seven which 
yield the highest numbers. Then, for each v, for each of these seven patterns P, consider all the 
combinations of P with the next most prominent patterns in Qs....  

    Obviously, the numbers could be tinkered with. Perhaps they could be selected more 
intelligently. But the basic idea should be clear: with luck, you can accrete a reasonably likely 
projection on any future time scale v by starting with an intense, important pattern and 
progressively adding less and less intense and important patterns onto it. At each stage a number 
of possible additions are considered, and those which contradict least are retained. This is a very 
crude methodology. It relies essentially on the precept that more intense habits can be expected 
to continue with greater certainty -- without this assumption, one might as well start with 
randomly selected "important" patterns as with intense ones.  

    The moral of all this is that if the philosophical problem of induction is unsolvable, the 
general practical problem of induction is formidable. By proposing the tendency to take habits 
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as a fundamental law, we have analyzed induction in terms of pattern recognition. By proposing 
that more intense patterns have more propensity to continue we have given a clue as to how to go 
about resolving the contradictory predictions which the tendency to take habits inevitably gives 
rise to. But this is nothing more than a general precept, a hint as to how to go about doing things: 
even if, on average, the more intense of a set of contradictory patterns prevails, it is folly to 
invariably assume that the more intense pattern one has perceived will prevail. To go beyond 
mere philosophical maxims requires a general framework for talking about the probabilities of 
various combinations of patterns, and this leads into a maze of sets and indices. It is extremely 
difficult to use past experience to tell which of two contradictory patterns will prevail.  

    But this task is necessary for intelligence: what we are talking about is no less than building a 
plausible model of the future on the basis of the past. Hopefully the homeliness of the necessary 
formalism does not obscure the very basic nature of the questions being addressed. Although 
induction is generally recognized to be essential to mentality, there has been very little work 
done on the general practical problem of induction. Philosophers have tirelessly debatedthe fine 
points of arguments for and against the justifiability and possibility of induction; and computer 
scientists have made a great deal of progress studying induction in limited contexts (Blum and 
Blum, 1975; Daley and Smith, 1986). But, cumbersome as the ideas of this section imply a 
hybrid pattern-theoretic/probabilistic method of predicting, on the basis of patterns recognized in 
the world in the past, the probability that a given pattern X will occur with intensity K in the 
future on a time scale [t,t+v], where t is the present.  

5.3 Induction, Probability, and Intelligence  

    In conclusion, let us now return to the question of intelligence. Assuming that the world is 
unpredictable and yet possesses the tendency to take habits to a significant degree, let us ask: 
how should a system act in order to approximately maximize the given "appropriateness" 
function A? In other words, let us ask the Kantian question: how is intelligence possible? One 
reasonable answer is, by repeating the following schematic steps:  

1. Recognize patterns  in the environment  

2. Construct a model of what the future will be like, based on reasoning by induction, assuming 
the strengthened Peirce's principle and using probability theory. That is, where t denotes the 
present time, construct a set of statements of the form "according to my best guess, the 
probability that the environment will exhibit pattern X, with intensity K, over time interval 
[t,t+v], is P(X,K,v)", where P(X,K,v) is as high as possible.  

3. Estimate what strategy will maximize A according to such an assumption.  

In later chapters it will be proposed that this three-step process is applied recursively -- that each 
of the three steps will often involve the application of all three steps to certain subproblems. And 
the process will be embedded in a larger, subtler web of structures and processes. But 
nonetheless, these three steps form the core about which the ideas of the following chapters will 
be arranged.  
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6  

Analogy  

6.0 The Structure-Mapping Theory of Analogy  

    Induction, as we have analyzed it, requires a store of patterns on which to operate. We have 
not said how these patterns are to be obtained. Any general global optimization algorithm could 
be applied to the problem of recognizing patterns in an environment. But pattern recognition is a 
difficult problem, and a mind needs rapid, reasonably accurate solutions. Not just any algorithm 
will do.  

    One might propose to determine, by induction, an effective pattern recognition algorithm. But 
although this might be possible, it would be very slow. Such a process probably occurred during 
the evolution of intelligent species, but within the lifespan of one organism there is simply not 
time.  

    In Chapter 9, I will propose that intelligent entities solve pattern recognition problems with a 
"perceptual hierarchy" that applies the multilevel philosophy of global optimization sketched in 
Chapter 2. Among other things, this perceptual hierarchy makes continual use of two processes: 
analogy and deduction. And deduction, it will be argued in Chapter 8, is also essentially 
dependent on analogy. Hence analogical reasoning is an essential part of the picture of 
intelligence drawn at the end of the previous chapter.  

WHAT IS ANALOGY  

    What I mean by analogy is, roughly, reasoning of the form "A is similar to B in respect X, 
therefore A is also similar to B in respect Y." As with induction, it is difficult to say exactly why 
analogy works as well as it does. But there is no disputing its effectiveness. Bronowski (1956) 
has driven the point home so forcefully that an extended quote seems appropriate:  

            Man has only one means to discovery, and that is to find likeness between things. To 
him, two trees are like two shouts and like two parents, and on this likeness he has built all 
mathematics. A lizard is like a bat and like a man, and on such likenesses he has built the theory 
of evolution and all biology. A gas behaves like a jostle of billiard balls,and on this and kindred 
likenesses rests much of our atomic picture of matter.  

            In looking for intelligibility in the world, we look for unity; and we find this (in the arts 
as well as in science) in its unexpected likenesses. This indeed is man's creative gift, to find or 
make a likeness where none was seen before -- a likeness between mass and energy, a link 
between time and space, an echo of all our fears in the passion of Othello.  

            So, when we say that we can explain a process, we mean that we have mapped it in the 
likeness of another process which we know to work. We say that a metal crystal stretches 
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because its layers slide over one another like cards in a pack, and then that some polyester yarns 
stretch and harden like a metal crystal. That is, we take from the world round us a few models of 
structure and process (the particle, the wave, and so on), and when we research into nature, we 
try to fit her with these models.  

Even more intriguingly, Bronowski goes on to relate analogy with structure :  

            Yet one powerful procedure in research, we know, is to break down complex events into 
simpler parts. Are we not looking for the understanding of nature in these? When we probe 
below the surface of things, are we not trying, step by step, to reach her ultimate and 
fundamental constituents?  

            We do indeed find it helpful to work piecemeal. We take a sequence of events or an 
assembly to pieces: we look for the steps in a chemical reaction, we carve up the study of an 
animal into organs and cells and smaller units within a cell. This is our atomic approach, which 
tries always to see in the variety of nature different assemblies from a few basic units. Our search 
is for simplicity, in that the distinct units shall be few, and all units of one kind identical.  

            And what distinguishes one assembly of these units from another? the elephant from the 
giraffe, or the right-handed molecule of sugar from the left-handed? The difference is in the 
organization of the units into the whole; the difference is in the structure. And the likenesses for 
which we look are also likenesses of structure.  

            This is the true purpose of the analytic method in science: to shift our gaze from the thing 
or event to its structure. We understand a process, we explain it, when we lay bare in it a 
structure which is like one we have met elsewhere.  

    What Bronowski observed in the history and psychology of science, Gentner and Gentner 
(1983) have phrased in a more precise and general way. They speak of the "Generative Analogy 
Hypothesis" -- the hypothesis that analogies are used in generating inferences. And in order to 
test this hypothesis, they setforth a specific theoretical framework for analogical processing, 
called "structure-mapping." According to this framework, analogical reasoning is concerned with 
deriving statements about a target domain T from statements about a base domain B. Each 
domain is understood to consist of a number of "nodes" and a collection of relations between 
these nodes. Essentially, a node may be any sort of entity -- an object, a color, etc. A structure-
mapping begins with a relation which takes certain base nodes into certain target nodes: if the 
source nodes are (b1,...,bn) and the target nodes are (t1,...,tn), it is a map M(bi)=tj, where i ranges 
over some subset of (1,...,n). Analogy occurs when it is assumed that a relation which holds 
between bi and bk also holds between M(bi) and M(bk).  

    The theory of structure-mapping analogy states that reasoning of this form is both common 
and useful. This hypothesis has been verified empirically -- e.g. by studying the way people 
reason about electricity by analogy to water and other familiar "base" domains. Furthermore, the 
evidence indicates that, as Gentner and Gentner put it, relations "are more likely to be imported 
into the target if they belong to a system of coherent, mutually constraining relationships, the 
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others of which map into the target." If a relation is part of a larger pattern of relationships which 
have led to useful analogies, people estimate that it is likely to lead to a useful analogy.  

    The structure-mapping theory of analogy -- sketched by Bronowski and many others and 
formalized by Gentner and Gentner -- clearly captures the essence of analogical reasoning. But it 
is not sufficiently explanatory -- it does not tell us, except in a very sketchy way, why certain 
relations are better candidates for analogy than others. One may approach this difficult problem 
by augmenting the structure-mapping concept with a more finely-grained pattern-theoretic 
approach.  

INDUCTION, DEDUCTION, ANALOGY  

    Peirce proclaimed the tendency to take habits to be the "one law of mind", and he divided this 
law into three parts: deduction, induction, and abduction or analogy. The approach of computer 
science and mathematical logic, on the other hand, is to take deductive reasoning as primary, and 
then analyze induction and analogy as deviations from deduction. The subtext is that deduction, 
being infallible, is the best of the three. The present approach is closer to Peirce than it is to the 
standard contemporary point of view. When speaking in terms of pattern, induction and analogy 
are more elementary than deduction. And I will argue that deduction cannot be understood 
except in the context of a comprehensive understanding of induction and analogy.  

      

STRUCTURAL SIMILARITY  

    As in Chapter 3, define the distance between two sequences f and g as d#(f,g)=%(P(f)-
P(g))U(P(g)-P(f)%#. And define the approximation to d#(f,g) with respect to a given set of 
functions S as  

dS(f,g)=%[(S%P(f))-(S%P(g))]U[(S%P(g))-(S%P(f))]%#. This definition is the key to our 
analysis of analogy.  

    A metric is conventionally defined as a function d which satisfies the following axioms:  

1) d(f,g) % d(g,h) + d(f,h)  

2) d(f,g) = d(g,f)  

3) d(f,g) % 0  

4) d(f,g)=0 if and only if f=g.  

Note that d# is not a metric, because it would be possible for P(f) to equal P(g) even if f and g 
were nonidentical. And it would not be wise to consider equivalence classes such that f and g are 
in the same class if and only if d#(f,g)=0, because even if d#(f,g)=0, there might exist some h 
such that d#(Em(f,h),Em(g,h)) is nonzero. That is, just because d#(f,g)=0, f and g are not for all 
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practical purposes equivalent. And the same argument holds for dS -- for dS(f,g)=0 does not in 
general imply dS(Em(f,h),Em(g,h)), and hence there is little sense in identifying f and g. A 
function d which satisfies the first three axioms given above might be called a pseudometric; that 
is how d# and dS should be considered.  

TRANSITIVE REASONING  

    To understand the significance of this pseudometric, let us pause to consider a "toy version" of 
analogy that might be called transitive reasoning. Namely, if we reason that "f is similar to g, and 
g is similar to h, so f is similar to h," then we are reasoning that "d(f,g) is small, and d(g,h) is 
small, so d(f,h) is small." Obviously, the accuracy of this reasoning is circumstance-dependent. 
Speaking intuitively, in the following situation it works very well:  

                      

                g f  

                        h  

But, of course, one may also concoct an opposite case:  

        f        g h  

Since our measure of distance, d#, satisfies the triangle inequality, it is always the case that 
d#(f,h) % d#(g,h) + d#(f,g). This puts a theoretical bound on thepossible error of the associated 
form of transitive reasoning. In actual circumstances where transitive reasoning is utilized, some 
approximation to d# will usually be assumed, and thus the relevant observation is that dS(f,h) % 
dS(g,h) + dS(f,g) for any S. The fact that dS(f,h) is small, however, may say as much about S as 
about the relation between f and h. The triangle inequality is merely the final phase of transitive 
reasoning; equally essential is to the process is the pattern recognition involved in approximating 
d#.  

6.1 A Typology of Analogy  

    Analogy is far more powerful than transitive reasoning; nonetheless, according to the present 
analysis it is nothing more than a subtler way of manipulating the pattern distance. I will 
introduce three forms of analogical reasoning -- structural analogy, modeling, and contextual 
analogy -- and propose a unified structure for analogical reasoning which encompasses all of 
them. It is perhaps not obvious that all conceivable cases of analogical reasoning are included in 
this formulation -- but I have been unable to find a counterexample. What I am attempting here is 
vaguely similar to Aristotle's list of the seventeen forms of syllogistic logic. He did not prove his 
list exhaustive, but it nonetheless served well for a long time.  

STRUCTURAL ANALOGY  

    Consider the following approach to recognizing patterns in an entity x.  
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1. dS(x%,x) is small.  

2. (y,z) is, approximately, a pattern in x%.  

3. Thus something near (y,z) is, approximately, a pattern in x.  

The justification of the process is obvious: dS is an approximation of d#, and d# is a measure of 
difference in pattern. In general, if d#(A,B) is small, then most of the patterns in A are also 
patterns in B, and vice versa. And as this distance gets smaller, the reasoning gets more certain.  

    This process I will call structural analogy; it is the simplest of the three forms. Quite simply, 
X is structurally analogous to x% if x and x% have similar structure. Roughly speaking, 
structural analogy is the assumption that if x and x% have some similar structures, then they 
have other similar structures.  

    For a less formal example, consider the following experiment, described by Ornstein (1986, 
p.159):  

        A man comes in to give a lecture to students. Afterward, the students are told that he is 
either a student or a professor and are asked to rate the lecture. Not surprisingly, they rate the 
lecture as being better if a professor has given it, but what is surprising is that they rate the 
lectureras taller if he was identified as a professor.  

It would appear that what is happening here is an unconscious, erroneous structural analogy. The 
students observe that the lecturer has something in common with the loose collection of patterns 
that might be called "high status" or "superiority". Therefore they assume, unconsciously, that he 
is likely to have other patterns in common with this same collection. This assumption is not 
overpoweringly strong, but it is enough to bias their perceptions.      

MODELING  

    Let us begin with a rough example. Suppose one seeks a method of making housing less 
expensive (i.e. one seeks a certain pattern in the domain of knowledge about housing, which 
domain we may call x). Then one might decide to reason by analogy to the automobile industry. 
Automobiles bear some similarity to houses -- both are designed to contain humans, both are 
manufactured in great number throughout the developed world, both represent fairly major 
investments for the average person, etc. There are obviously significant differences also, but the 
association is by no means arbitrary. One might reasonably ask: how does one make inexpensive 
cars?  

    In reasoning thus, one would be beginning (Step 1 in the process of structural analogy) with 
the observation that the entity "housing" is in some measure similar to the entity "cars". In the 
notation given above, if the domain of knowledge about housing is x, then the domain of 
knowledge about cars is x%.  
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    Cars, one might then observe, are much less expensive when mass-produced than when 
custom-built and custom-designed. And cars are being made cheaper and cheaper by more and 
more efficient methods of mass production. This is Step 2 in the process of structural analogy: 
one is recognizing a pattern in x%.     Finally, one might map this reasoning back to the domain 
of houses, searching in the vicinity of "cars are made less expensive through mass production" 
and finding "houses are made less expensive through mass production" (Step 3). The validity of 
this hypothesis could then be tested by exploring whether it is in fact possible to make the 
production of housing less expensive through mass production -- by exploring the feasibility of 
trucking or air-lifting a pre-assembled house to a given location, et cetera.  

    This may be interpreted as an illustration of structural analogy: the structure of the housing 
industry is somewhat similar to the structure of the auto industry, so further similarities are 
assumed to exist. But it also suggests a slightly different form of analogical reasoning, which I 
shall call modeling. For in this example the relation between x% and x was exactly the same as 
the relation between (y,z) and the pattern finally found in x. That is, if we define a function f by 
f(g(cars))= g(housing), then f(inexpensive cars) = inexpensive housing, and also f(mass-
produced cars) = mass-produced housing. This suggests thefollowing general form of reasoning:  

1. dS(f(x),x) is small.  

2. (y,z) is, approximately, a pattern in f(x).  

3. Thus something near (f-1(y),f-1(z)) is, approximately, a pattern in x.  

          

In general, f-1 may be multivalued; it may be a relation rather than a function. This poses a 
moderate computational difficulty (Grandy, 1985), which may be dealt with by maximum-
entropy methods like those discussed in Chapter 9.  

BRAINSTORMING  

    Why would modeling analogy work? If f(w) is always structurally similar to w, for any w, 
then it is just a special form of structural analogy, and it is justified whenever structural analogy 
is justified. Otherwise, however, it is a question of whether the function f "preserves patterns". 
There might be some functions f for which Steps 2 and 3 taken exclusively of Step 1 would be a 
plausible form of reasoning. In such cases it would follow from "(y,z) is a pattern in x" that 
"something near (f(y),f(z)) is probably a pattern in f(x)." But, on the other hand, there are 
certainly many functions which do not preserve patterns in this sense.  

    In some cases, the choice of a function f which does not generally tend to preserve patterns 
may be highly valuable. This is one way of understanding the process of "brainstorming": one 
transforms a problem x into a context f(x) which is fairly unlikely to have much to do with the 
original context, seeks an answer in this context, and then tries to map the answer back. For 
instance, in thinking about international combat, one might say to oneself "now, pretend each 
country is a little boy, and the various parties of the war are just little boys squabbling." In this 
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case we would be selecting f so that f(g(nations))=g(boys).     Let us assume that one has mapped 
the particularities of a war into the particularities of a squabble, and then thought of a way to 
resolve the squabble. Then in order to get anything useful one would have to map one's answer 
back into the domain of nations, i.e. one would have to take f-1 of one's answer. In this case it 
would seem that f is only moderately pattern-preserving, and such an experiment would have a 
fair but not excellent chance of yielding a relevant suggestion.  

    Mathematically this form of reasoning may be viewed as the attempt to find a function f, 
mapping a given domain D into a given range R, that is approximately "topologically 
semiconjugate" to the structure operator S(x). That is, f maps D to R and, ideally, 
S(f(x))=f(S(x)). Often R may be understood as a model of D, in the sense that each element x of 
D may be associated with an element of R in such a way that the relation of x to other elements y 
of D is similar to the relation of f(x) to the elements f(y) of R.  

CONTEXTUAL ANALOGY  

    Only one form of analogy remains. What if x and x% have no inherent structural 
commonality, but are related to other patterns in similar ways? One might still reason 
analogically that x and x% are similar. Or one might reason analogically from the observation 
that x and x% are related to different patterns in similar ways. Let us call this contextual 
analogy. Such reasoning is not encompassed under structural analogy or modeling -- a new 
formula is required.     To say that x and x% are related to other patterns in similar ways, is to say 
that d#(Em(x%,w%),Em(x,w)) is small. Thus contextual analogy rests on those aspects of x 
which do not manifest themselves in the internal structure of x, but which nonetheless emerge 
when x is conjoined with other entities.  

    For instance, suppose w=w% is a codebook which contains several different codes, including 
Code A and Code B. Suppose x is a message in Code A, and x% is a message in Code B -- and 
suppose x and x% both convey the same message. Then x and x% may not appear similar; they 
may have no virtually no patterns in common.  

    To see this, observe that the meaning conveyed by a coded message, say x, is not generally a 
pattern in that coded message. If the meaning of the message x is called Mx, and the function 
(contained in the codebook) which translates x into Mx is called F, then we may write F(x)=Mx. 
But (F,Mx) is a pattern in X only if a%F% + b%Mx% + cC(F,Mx) < %x%, and this is not at all 
inevitable. Perhaps %Mx% is less than %x%, but if the codebook is large or difficult to use, then 
%F% or C(F,Mx) may be sizeable. And the same could be said for x%.  

    So in this example, d#(x,x%) may be small, but what about d#[Em(x%,w), Em(x,w)]? Clearly, 
Mx is an element of Em(x%,w), and Mx% is an element of Em(x%,w), so that if Mx and Mx% are 
equal, this distance is small. Contextual analogy would occur, for instance, if one reasoned that, 
because the messages x and x% have similar meanings, they may have come from the same 
person.  

    This example is not at all artificial; in fact it may turn out to be central to mental function. The 
mind works in terms of symbol systems, which may be considered as highly sophisticated 
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codebooks. Street signs are coded messages, as are sentences. Suppose one reasons that sentence 
A has a similar meaning to sentence B, another, and therefore that the person uttering sentence A 
may have a similar attitude to the person uttering sentence B. This is contextual analogy, because 
the meaning of a sentence is not actually a pattern in that sentence, but rather a pattern emergent 
between that sentence and the "codebook" of language.  

A GENERAL ANALOGY ALGORITHM  

    One may incorporate all three forms of analogy in one general process:  

1. dS(St(f(x%)%w%)-St(w%),St(x%w)-St(w)) is small.  

2. (y,z) is, approximately, an element of St(f(x%)%v%)-St(v%).  

3. Thus something near (f-1(y),f-1(z)) is, approximately, an element of  

St(x%v)-St(v), where v=f-1(v%) is perhaps a good guess.  

    In the case of structural analogy, f is the identity mapping, and w%, v and v% are the empty 
set, but x% is different from x.  

    In the case of modeling, x=x% and w%, v and v% are the empty set, but f is not the identity 
mapping.  

    In the case of contextual analogy, f is the identity mapping but w% is not the empty pattern; v 
and v% may or may not be the empty set. If v and v% are the empty set, then one has the form of 
reasoning "x and x% have similar relations to y and y% respectively; therefore x and x% may be 
structurally similar." And if neither v nor v% is the empty set, one has the form of reasoning "x 
and x% have similar relations to y and y%; therefore they may also have similar relations to v 
and v%."  

    The reason for expressions such as St(x%v)-St(v) is to specify that, for instance, either 
patterns in x or patterns in Em(x,v) are desirable, but not patterns in v alone.  

     The general algorithm -- which I will call, simply, analogy -- hence includes the three forms 
of analogy discussed above. It also encompasses hybrid forms. For instance, if x=x%, but f is not 
the identity and neither v, v% nor w% are the empty set, then one is mapping x to a model range 
via f and executing contextual rather than structural analogy in this range.  

    This general idea could be implemented in many different ways. For instance, consider the 
following hybridization of structural and modeling analogy:  

1. dS(x%,x) is small.  

2. Select (y,z) which is, approximately, a pattern in f(x).  
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3. Check if something near (f-1(y),f-1(z)) is, approximately, a pattern in x%.  

     If this doesn't turn out to be the case, and f is reasonably near the identity, then check if 
something near (y,z) is, approximately, a pattern in x%.  

In this implementation, modeling is considered partly as a tool for searching the space near (y,z).  

    Each step of the process of analogy involves a significant effort: first, to pick x% or f; second, 
to recognize a pattern in f(x%); third, searching in a certain vicinity for a pattern in x, and fourth, 
inverting f. It would be possible to execute the latter three tasks by some general optimization 
algorithm, and to pick x% or f at random. But in order to reap the full power of 
analogicalreasoning, it is necessary to have access to an intelligently structured database. In the 
next section, we shall consider the hypothesis that memory is structured specifically so as to 
efficiently supply the process of analogy with the data it requires.  

ANALOGIES AMONG DIGRAPHS  

    It should be noted that an entity which characteristically seeks certain types of patterns will 
therefore characteristically make certain types of analogies. In other words, different analogies 
may occur to different entities, depending on the idiosyncracies of the pattern recognition 
algorithms involved. This point of view may be helpful in relating the present approach to other 
analyses of analogy.  

    For instance, Poetzsche's (1988) theory of analogy deals only with structural analogy and 
applies to precisely those entities which:  

1) recognize patterns only in digraphs.  

2) compute structural similarity using only patterns (x,y) of the form y={v,w},  

where v = "construct x by connecting node n1 of z to node m1 of w, node n2 of z to node m2 of 
w,..." and * is defined accordingly.  

In other words, according to Poetszche's definitions, two digraphs are structurally similar if they 
have a common subgraph.  

    This scheme deals well with processes that can be easily decomposed into subprocesses. In 
particular, Poetszche is concerned with robot motion: his goal is to construct a robot which can 
figure out how to complete a task based on knowledge of how to complete similar tasks. Toward 
this end, he has designed a robot which internally expresses each task as a digraph of 
"elementary tasks". Given a new task, the robot searches its memory for a task with a structurally 
similar digraph and then (by structural analogy) uses this as the starting point for figuring out 
how to do the task at hand.  

6.2 Analogy and Induction  



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

81

    Induction and analogy are obviously closely related. In induction one assumes the future will 
be similar to the past, and tries to guess which of a set of past patterns will continue into the 
future. In analogy one assumes that similar entities will have similar patterns, and directs pattern 
recognition on this basis. The difference is that in analogy, one is merely trying to locate patterns 
in some entity x, by analogy to some entity x%. In induction, on the other hand, one assumes that 
a complete catalogue of patterns has already been recognized, and one tries to make a coherent 
model out of these patterns. The two processes complement each other.  

BACKGROUND KNOWLEDGE  

    Many AI researchers view analogical reasoning with a great deal of skepticism. For instance, 
Bipin Indurkhya has argued that  

            One naturally asks: Given some state of background knowledge, what justification is 
there, if any, that similarities in certain respects determine similarities in other respects? ...an 
inference from analogy cannot be justified on the basis of existing similarity between the source 
and the target alone. The justification, if any, must come from the background knowledge in 
some other form.... Once it is realized that an inference based only on some existing similarity 
between the source and the target -- and nothing else -- is about as justified as a random 
inference, one learns to exercise extreme caution in deriving an inference from analogy. One 
seeks justification in other places; it must be some other piece of knowledge, some piece of fact, 
which "justifies" why the existing similarities determine the inferred ones. And if no such 
justification can be found, the so-called analogical inference is to be properly discarded. (1988, 
pp. 224-25)  

In the notation introduced above, the "source" is x% and the "target" is x. The point is that, in 
general, there is no reason to believe that the existence of some similarities between x and x% 
implies the existence of other similarities.  

Indurkhya thinks this implication must be drawn from "facts" and "background information."  

    Really, there are two questions here. The first is, when is it justifiable to assume that the 
existence of a degree D1 of similarity between x and x% implies a degree D2 of similarity 
between x and x%. In other words, how can one tell when reasoning by analogy is justifiable at 
all; and when is it justifiable, how can one tell to what extent? The other is, how is it possible to 
tell, based on the type  of similarity between x and x%, what kinds of further similarities to look 
for. That is: in Step 2 of the analogy algorithm, is there some way to determine what sorts of 
patterns (y,z) should be looked at on the basis of the similarities used for the computation? 
Indurkhya, expressing a view which is widespread in the AI community, states that both of these 
questions should be answered by reference to "background knowledge".  

    Does this requisite background knowledge perhaps come from deduction? This may be true in 
certain instances. But, as we shall see, deductive reasoning is only useful when it is paired with 
analogical reasoning. The analogies used in executing deductive reasoning cannot all be 
executed on the basis of background information obtained by deduction.  
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    Does the background knowledge come from experience? If so, it does not come directly from 
raw, unprocessed sense perception; it comes out of the process of induction. Induction requires 
pattern recognition. And I suggest that effective general pattern recognition requires analogy. 
From this it follows thatthe background information Indurkha requires cannot come entirely from 
experience: either it comes from some other source or it is not always necessary.  

    However, although induction may not be used to justify every particular analogy, it may still 
be used to justify analogy in general. This may sound contradictory, but the paradox is only 
apparent. Not all the analogies used in inductive reasoning can be justified inductively. However, 
if analogies that are not justified by induction are used anyway, and they happen to work, then 
the tendency to take habits implies that analogy can be expected to work in the future.  

I find this argument rather convincing. On the basis of ample real-world experience, we know 
that analogy has often worked in the past. We have obtained useful results from it so often that 
its effectiveness must be considered a very intense pattern in the past. Therefore, by the tendency 
to take habits -- by induction -- it is relatively likely that analogy will work in the future. Hence it 
is advisable to reason by analogy.  

    Another way to phrase this is to postulate a "spatial" tendency to take habits, to the effect that 
analogy does in fact tend to work more often than it would in a randomly selected universe 
obeying the temporal tendency to take habits. This strategy seems much less elegant than in the 
temporal, inductive tendency to take habits; it has more of an ad hoc flavor. But it does yield the 
desired result.  

6.3 Hierarchical Analogy  

    We have not yet discussed the possibility that analogies might be justified by analogy. 
Obviously, analogy as a general mode of thought cannot be justified by analogy; that would be 
circular reasoning. But, just as particular analogies can be justified by inductive or deductive 
background knowledge, so can particular analogies be justified by analogical background 
knowledge. In some cases, the mind may use analogical reasoning to determine how probable it 
is that similarity A between x and x% will imply similarity B between x and x%.  

y observing which similarities have, in similar situations, led to which other similarities. 
Actually, this sort of analogical background information is a special kind of inductive 
background information, but it is worth distinguishing.  

    Let us be more precise. Assume that processor P1 executes a long sequence of analogical 
reasoning processes, and processor P2 observes this sequence, recording for each instance a 
vector of the form (w,w%,f,w,w%,v,v%,R,r), where r is a number measuring the total 
prominence of the patterns recognized in that instance, and R is the set of patterns located.  

    The prominence of a pattern may -- as in the previous chapter -- be defined as the product of 
its intensity with its importance. The prominence of a set of patterns S may be crudely defined as 
%S%K, where S is the structural complexity %S% of the set and K is some number representing 
the prominence of the set. A very crude way to define K is as the average over all (y,z) in S of 
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theimportance of (y,z). A more accurate definition could be formulated by a procedure similar to 
Algorithm 3.1.  

    Then processor P2 can seek to recognize patterns (y,z) with the property that when x is a 
pattern in (w,w%,f,w,w%,v,v%,R), r tends to be large. This is an optimization problem: 
maximize the correlation of r with the intensity of x, over the space of patterns in the first six 
components of the vector. But it is a particularly difficult optimization problem in the following 
sense: determining what entities lie in the space over which optimization is taking place is, in 
itself, a very difficult optimization problem. In other words, it is a constrained optimization 
problem with very unpleasant constraints. One very simple approach would be the following:  

1. Using straightforward optimization or analogy, seek to recognize patterns in 
(x,x%,f,w,w%,v,v%,R).  

2. Over the space of patterns recognized, see which ones correlate best with large r.  

3. Seek to recognize new patterns in (x,x%,f,w,w%,v,v%,R) in the vicinity of the answer(s) 
obtained in Step 2.  

Perhaps some other approach would be superior, but the difficulty is that one cannot expect to 
find patterns in a given narrow vicinity merely because functions in that region correlate well 
with r. The focus must be on the location of patterns, not the search for large correlation with r.  

    In this way analogy could be used to determine which analogies are likely to pay off. This 
might be called second-level analogy, or "learning by analogy about how to learn by analogy." 
And the same approach could be applied to the analogies involved in analyzing analogies, 
yielding third-level analogy, or "learning by analogy how to learn by analogy how to learn by 
analogy." Et cetera. These are tremendously difficult optimization problems, so that learning on 
these levels is likely to be rather slow. On the other hand, each insight on such a high level will 
probably have a great impact on the effectiveness of lower-level analogies.  

    Let us be more precise about these higher levels of learning. A processor which learns by 
second level analogy must be connected to a processor which learns by analogy, in such a way 
that is has access to the inputs and the outputs of this processor. Similarly, a processor which 
learns by third level analogy must be connected to a processor which learns on the second level 
in such a way that it has access to the inputs and the outputs of this second-level processor -- and 
the inputs and outputs of this second-level processor include all the inputs and outputs of at least 
one first-level processor. In general, the absolute minimum number of inputs required for an n'th-
level analogy processor is proportional to n: this is the case, for instance, if every n'th level 
processor is connected to exactly one (n-1)'th level processor. If each n-level processor is 
connected to k (n-1)'th level processors for some k>1, then the number of inputs required for an 
n'th level processor is [1-kn+1]/[1-k].  

    In general, if a set of analogical reasoning processors -- Nk learning on level k, k%n -- is 
arranged such that each processor learning on level k is connected to all the inputs and outputs of 
some set of nk processors on level k-1, then the question of network architecture is the question 
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of the relation between the Nk and the nk. For instance, if Nknk=8Nk-1, then each (k-1)-level 
processor is being analyzed by eight different k-level processors; but if Nknk=Nk-1, then each (k-
1)-level processor is being analyzed by only one k-level processor.  

    This is an hierarchical analogy network: a hierarchy of processors learning by analogy how to 
best learn by analogy how to best learn by analogy how to best learn by analogy... how to best 
learn by analogy. As will be explained in later chapters, in order to be effective it must be 
coupled with a structurally associative memory network, which provides a knowledge base 
according to which the process of analogy can be executed.  

6.4 Structural Analogy in the Brain  

    The neurons of the cortex are organized in clusters, each containing 50 to 10,000 neurons. The 
neurons of each cluster are connected primarily to other neurons in the same cluster. Edelman 
(1988) has proposed that it makes sense to think of connections between clusters, not just 
individual neurons, as being reinforced or inhibited; and he has backed this up with a detailed 
mathematical model of neural behavior. Following this line of thought, it is the nature of the 
interaction between neural clusters which interests us here. We shall show that, according to a 
simple model inspired by Edelman's ideas, the interaction of neural clusters gives rise to a simple 
form of structural analogy.  

    Edelman's theory of "Neural Darwinism" divides the evolution of the brain into two phases. 
The first, which takes place during fetal development, is the phase of cluster formation. And the 
second, occurring throughout the remainder of life, is the phase of repermutation: certain 
arrangements of clusters are selected from the set of possible arrangements. This is not an 
outlandish hypothesis; Changeux (1985), among others, has made a similar suggestion. Edelman, 
however, has formulated the theory as a sequence of specific biochemical hypotheses, each of 
which is supported by experimental results.  

    Roughly speaking, a set of clusters which is habitually activated in a certain order is called a 
map. Mental process, according to Edelman's theory, consists of the selection of maps, and the 
actual mapping of input -- each map receiving input from sensory sources and/or other maps, 
and mapping its output to motor control centers or other maps. Mathematically speaking, a map 
is not necessarily a function, since on different occasions it may conceivably give different 
outputs for the same input. A map is, rather, a dynamical system in which the output yt at time t 
and the internal state St at time t are determined by yt=f(xt-1,St-1), St=g(xt-1,Mt-1), where xt is 
the input at time t. And it is a dynamical system with a special structure: each map may be 
approximately represented as a serial/parallel composition of simple maps which are composedof 
single clusters. One key axiom of Edelman's theory is the existence of numerous "degenerate" 
clusters, clusters which are different in internal structure but, in many situations, act the same 
(i.e. often produce the same output given the same input). This implies that each map is in fact a 
serial/parallel combination of simple component maps which are drawn from a fairly small set, 
or at least extremely similar to elements of a fairly small set.  

    There is much more to Neural Darwinism than what I have outlined here -- for instance, I have 
not even mentioned Edelman's intriguing hypotheses as to the role of adhesion molecules in the 
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development of mentality. But there are nevertheless a number of mysteries at the core of the 
theory. Most importantly, it is not known exactly how the behavior of a cluster varies with its 
strengths of interconnection and its internal state.  

    Despite this limitation, however, Neural Darwinism is in my opinion the only existing 
effective theory of low-to-intermediate-level brain structure and function. Philosophically, it 
concords well with our theory of mind: it conceives the brain as a network of "maps", or 
"functions". In previous chapters we spoke of a network of "programs," but the terms "program" 
and "map" are for all practical purposes interchangeable. The only difference is that a program is 
discrete whereas the brain is considered "continuous," but since any continuous system may be 
approximated arbitrarily closely by some discrete system, this is inessential.  

    So, consider a set of n processors Pi, each one possessing an internal state Sit at each time t. 
Assume, as above, that the output yit at time t and the internal state Sit at time t are determined 
by yit=fi(xit-1,Sit-1), Sit=gi(xit-1,Sit-1), where xit is the input at time t. Define the "design" of 
each processor as the set of all its possible states. Assume the processors are connected in such a 
way that the input of each processor is composed of subsets of the output of some set of k 
processors (where k is small compared to n, say O(logn)). This is a basic "network of 
processors".  

    Note that we have defined f and g to vary with i. Strictly speaking, this means that the 
different processors are different dynamical systems. In this case, what it really means, 
intuitively, is that fi and gi may vary with the pattern of flow of the dynamical system. In fact, 
from here on we shall assume gi=g for all i; we shall not consider the possibility of varying the 
gi. However, we shall be concerned with minor variations in the fi; in particular, with 
"strengthening" and "weakening" the connections between one processor and another.     For this 
purpose, we may as well assume that the space of outputs yit admits is Rn or a discrete 
approximation of some subset thereof. Let si,j denote the scalar strength of connection from Pi to 
Pj. For each Pi, let jfit denote the portion of the graph of fi which is connected to Pj at time t. 
Assume that if j and l are unequal, then jfir and lfit are disjoint for any t and r; and that jfir= si,j jfit 
for all t and r. According to all this, then, the only possible variations of fi over time are merely 
variations of strength of connectivity, or "conductance".  

    As observed above, our model of mind is expressed as a network of processors, and Edelman's 
theory expresses brain function as a result of thedynamics of a network of neuronal clusters, 
which are specialized processors. In the context of neuronal clusters, the "design" as defined 
above is naturally associated with the graph of interconnection of the neurons in the cluster; a 
particular state is then an assignation of charge levels to the neurons in the cluster, and a 
specification of the levels of various chemicals, most importantly those concerned with the 
modification of synaptic strength. According to Edelman's theory, the designs of the million or 
so processors in the brain's network are highly repetitive; they do not vary much from a much 
smaller set of fundamental designs. And it is clear that all the functions fi regulating connection 
between neuronal clusters are essentially the same, except for variations in conductance.  

THE NOISY HEBB RULE  
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    D.O. Hebb, in his classic Organization of Behavior (1949), sought to explain mental process in 
terms of one very simple neural rule: when a synaptic connection between two neurons is used, 
its "conductance" is temporarily increased. Thus a connection which has proved somehow useful 
in the past will be reinforced. This provides an elegant answer to the question: where does the 
learning take place? There is now physiological evidence that Hebbian learning does indeed 
occur. Two types of changes in synaptic strength have been observed (Bliss, 1979): "post-tetanic 
potentiation", which lasts for at most a few minutes, and "enhancement", which can last for hours 
or days.  

    Hebb proceeded from this simple rule to the crucial concepts of the cell-assembly and the 
phase-sequence:  

        Any frequently repeated, particular stimulation will lead to the slow development of a "cell-
assembly", a diffuse structure comprising cells in the cortex and diencephalon... capable of 
acting briefly as a closed system, delivering facilitation to other such systems and usually having 
a specific motor facilitation. A series of such events constitutes a "phase sequence" -- the thought 
process. Each assembly action may be aroused by a preceding assembly, by a sensory event, or -- 
normally -- by both.  

This theory has been criticized on the physiological level; but this is really irrelevant. As Hebb 
himself said, "it is... on a class of theory that I recommend you to put your money, rather than 
any specific formulation that now exists" (1963, p.16). The more serious criticism is that Hebb's 
ideas do not really explain much about the most interesting aspects of mental process. Simple 
stimulus-response learning is a long way from analogy, associative memory, deduction, and the 
other aspects of thought which Hebb hypothesizes to be special types of "phase sequences".  

    Edelman's ideas mirror Hebb's on the level of neural clusters  rather than neurons. In the 
notation given above, Edelman has proposed that if the connection from P1 to P2 is used often 
over a certain interval of time, then its"conductance" s1,2 is temporarily increased. 
Physiologically, this is a direct consequence of Hebb's neuron-level principle; it is simply more 
specific. It provides a basis for the formation of maps: sets of clusters through which information 
very often flows according to a certain set of paths. Without this Hebbian assumption, lasting 
maps would occur only by chance; with it, their emergence from the chaos of neural flow is 
virtually guaranteed. At bottom, what the assumption amounts to is a neural version of the 
principle of induction. It says: if a pathway has been useful in the past, we shall assume it will be 
useful in the future, and hence make it more effective.  

    Unfortunately, there is no reason to believe that the cluster-level interpretation of Hebb's 
theory is sufficient for the explanation of higher mental processes. By constructing a simulation 
machine, Edelman has shown that a network of entities much like neural clusters, interacting 
according to the Hebbian rule, can learn to perceive certain visual phenomena with reasonable 
accuracy. But this work -- like most perceptual biology -- has not proceeded past the lower levels 
of the perceptual hierarchy.  

    In order to make a bridge between these neural considerations and the theory of mind, I would 
like to propose a substantially more general hypothesis: that if the connection between P1 and P3 
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is used often over a certain interval of time, and the network is structured so that P2 can 
potentially output into P3, then the conductance s2,3 is likely to be temporarily increased.       

    As we shall see, this "noisy Hebb rule" leads immediately to a simple explanation of the 
emergence of analogy from a network of neural clusters. Although I know of no evidence either 
supporting or falsifying the noisy Hebb rule, it is certainly not biologically unreasonable. One 
way of fulfilling it would be a spatial imprecision in the execution of Hebbian neural induction. 
That is, if the inductive increase in conductance following repeated use of a connection were by 
some means spread liberally around the vicinity of the connection, this would account for the 
rule to within a high degree of approximation. This is yet another case in which imprecision may 
lead to positive results.  

THE NOISY HEBB RULE AND STRUCTURAL ANALOGY  

    Consider the situation in which two maps, A and B, share a common set of clusters. This 
should not be thought an uncommon occurrence; on the contrary, it is probably very rare for a 
cluster to belong to one map only. Let B-A (not necessarily a map) denote the set of clusters in B 
but not A. The activation of map A will cause the activation of some of those clusters in map B-
A which are adjacent to clusters in A. And the activation of these clusters may cause the 
activation of some of the clusters in B-A which are adjacent to them -- and so on. Depending on 
what is going on in the rest of B, this process might peter out with little effect, or it might result 
in the activation of B. In the latter case, what has occurred is the most primitive form of 
structural analogy.  

    Structural analogy, as defined earlier, may be very roughly described asreasoning of the form: 
A and B share a common pattern, so if A is useful, B may also be useful. The noisy Hebb rule 
involves only the simplest kind of common pattern: the common subgraph. But it is worth 
remembering that analogy based on common subgraphs also came up in the context of 
Poetszche's approach to analogical robot learning. Analogy by common subgraphs works. There 
is indeed a connection between neural analogy and conceptual analogy.     And -- looking ahead 
to chapter 7 -- it is also worth noting that, in this simple case, analogy and structurally 
associative memory are inextricably intertwined: A and B have a common pattern and are 
consequently stored near each other (in fact, interpenetrating each other); and it is this 
associative storage which permits neural analogy to lead to conceptual analogy.  

 

7  

Long-Term Memory  

7.0 Structurally Associative Memory  

    It is clear that analogy cannot work effectively without recourse to an effective method of 
storing patterns. However, I suggest that an even stronger statement holds: the nature of analogy 
actually dictates a particular type of memory structure. The only way analogy can work 
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effectively is if it is coupled with a memory that is specifically structured so as to support 
analogical reasoning.  

    This memory must, of course, be a "long-term memory": its contents must be sufficiently 
permanent to carry over from one situation to another. I will argue that the entire structure of the 
mind's long-term memory can be elicited through the study of analogy. On the other hand, the 
"short-term memory" of contemporary psychology is essentially a euphemism for 
"consciousness", and we shall deal with it in a later chapter.  

    In a completely different context, Jousselin (1987) has reached a similar conclusion regarding 
the relation between processing and memory. He has shown that, in a very general mathematical 
sense, the nature of the operations carried out by the processor of a computer actually determine  
the structure of the memory of that computer.  

    Strictly speaking, what is given here is not a model of how memories are physically stored in 
the brain or anywhere else, but rather a model of how memory access must work, of how the 
time required to access different memories in different situations must vary. However, following 
Jousselin, I hold that the structure of memory access is much if not all of the structure of 
memory. This point will be elaborated below.  

ASSOCIATION AND PATTERN  

    The model which I will propose is associative in the sense that it stores related elements near 
each other (Kohonen, 1984; Palm, 1980). I have already suggested that mental process is 
founded on induction and analogy, which arebased on pattern recognition. It follows from this 
hypothesis that, from the point of view of mental process, two entities should be considered to be 
associated if and only if they have patterns in common, or are bound together as the substrate of 
a common pattern.  

    As in Chapter 3, let IN(x,y;z) denote the intensity with which (x,y) is a pattern in z. Then the 
network of emergence associated with a set of functions is a weighted graph of which the nodes 
correspond to the functions, and in which each triple x, y an z is connected as follows  

%  

y %%%%%%%%%%%  

%c %%%% x  

z %%%%%%%%%%%  

      

with weight c=IN(x,y;z). If IN(x,y;z)=0 then, of course, no zero-weight connection need actually 
be drawn. The essential aspect of this diagram is that each of x, y and z holds a unique position.  
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    A structurally associative memory, associated with a set of functions, is also a weighted 
graph. The nodes correspond to the functions, and the nodes are connected in triples. In these 
respects it is similar to a network of emergence. But it need not possess the perfect structure of 
the network of emergence. Rather, if it does not possess this perfect structure, it is required to 
continually adjust itself so as to better approximate the structure of a network of emergence. It 
may contain the same entity at many different places. It may adjust itself by connecting nodes 
which were not previously connected, by adjusting the intensity of existing connections, or by 
adding new nodes (representing new or old entities).  

    The degree to which a graph is a structurally associative memory may be defined in a number 
of ways, the simplest of which are of the form: 1/[1-c*(the amount by which the graph deviates 
from the network-of-emergence structure)], where c is an appropriately chosen positive constant. 
But there is no need to go into the details.  

    From here on, I will occasionally refer to a structurally associative memory of this sort as a 
STRAM. Imperfection in the structure of a STRAM may stem from two sources: imperfect 
knowledge of the degrees to which a certain pair of functions is a pattern in other functions; or 
imperfect reflection of this knowledge in the structure of the network. The former is a pattern 
recognition problem and relates to the interconnection of cognition and memory, to be addressed 
below. For now let us concentrate on the latter difficulty: given a certain set of data, how can a 
structurally associative memory be intelligently reorganized?  

    In practice, a structurally associative memory cannot be given an unlimited number of nodes, 
and if it has a reasonably large number of nodes, then not every triple of nodes can be 
interconnected. The number of connecting wires would very soon grow unmanageable. This is 
the familiar combinatorialexplosion. To be practical, one must consider a fixed set of n nodes 
each connected to a small number k of other nodes (say k=O(logn)), and one must arrange the 
given functions among these nodes in such a way as to approximate the structure desired. When 
a new function is created, it must take a node over from some other function; and likewise with a 
new connection. This requires an intricate balancing; it is a difficult optimization problem. What 
is required is a rapid iterative solution; an algorithm which is able to continually, incrementally 
improve the structure of the memory while the memory is in use. We shall return to this in 
Section 7.2.  

7.1 Quillian Networks  

    It is rather difficult to study the structure of human long-term memory, since we cannot look 
into a person's brain or mind to determine the processes by which their memory organizes itself. 
The only aspect of memory which is open to study is memory access. In particular, a great deal 
of attention has been devoted to the time required for memory access.  

    One frequently studied phenomenon is "priming": an experimenter shows the subject one 
letter, then shows two other letters simultaneously, and measures how long it takes for the 
subject to determine if the two simultaneously presented letters are the same or different. The 
answer comes considerably faster when the one preliminary letter is the same as one of the two 
simultaneous letters (Posner and Snyder, 1975). This shows that when something is summoned 
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from memory it is somehow "at the top" of the memory for a period afterwards, somehow more 
easily accessible.  

    According to the idea of structurally associative memory, if x is more easily accessible than y, 
those things which are similar to x should in general be more easily accessible than those things 
which are similar to y. This has been shown by many different experimenters, e.g. Rips et al 
(1973).  

    This is an essential result; however, it is clear that this simple feature would be predicted by all 
sorts of different memory models. Using similar techniques, psychologists have attempted to 
determine the structure of memory in further detail. For instance, Collins and Quillian (1969) 
performed several experiments to test Quillian's network theory of memory (Fig. 3), according to 
which concepts are stored as nodes in a digraph. For instance, chair, couch and table would be 
stored on nodes emanating from the furniture node; and coffee table and dinner table would be 
stored on nodes emanating from the table node. In their experiments, subjects were asked to 
verify statements of the form "an X is a Y" -- say, "a couch is a table", or "a couch is furniture". 
Collins and Quillian predicted that the time required to verify the sentence would be a linear 
function of the number of links between the concepts in the memory digraph.  

    This hypothesis at first appeared to be correct; but further experiments showed that the model 
has difficulty dealing with negative responses. Therefore Rips et al proposed an alternate model 
of memory in which the similarity of twoentities is defined as the amount by which their 
"semantic features" overlap. According to their experiments, this sort of similarity is a far better 
predictor of reaction time than Quillian's hierarchical distance.  

    Collins and Loftus (1975) responded with an improvement of the Quillian model, according 
which concepts are stored in the nodes of a network, and each link of the network is assigned a 
weight corresponding to the degree of association between the concepts that it connects. Memory 
access then involves two stages: 1) "spreading activation", in which an activated node spreads its 
activation to neighboring nodes, and 2) evaluation of the most active portion of the network. This 
accounts for the data because it incorporates the "feature overlap" of Rips et al into the network 
structure. Ratcliff (1989) has criticized the model for not adequately explaining the process of 
evaluation; but this seems to me to be beside the point.  

    The model of Collins and Loftus is somewhat similar to the structurally associative memory; 
the biggest difference is that in the Collins and Loftus model, "similarity" is imposed a priori 
from the outside. The model does not explain how the mind assigns these degrees of similarity. 
Psychologically, this is unsatisfactory. However, it must be noted that "Quillian networks" of the 
sort studied by Collins and Loftus have since become quite common in AI programs. The a priori 
nature of similarity is no problem here, since the writer or user of the program can specify the 
pertinent degrees of similarity. Quillian networks are a simple and effective way of representing 
knowledge.  

    A unique Quillian network may be derived from any network of emergence by a very simple 
process. To explain this we shall require one preliminary concept.  
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Definition 7.1: The contextual distance between x and y, relative to the set V, is the sum over 
all v in V of d#[St(x%v)-St(x),St(y%v)-St(v)]. It will be denoted d##(x,y).  

This measures the distance between x and y relative to the set V: not only direct structural 
similarities between x and y are counted, but also similarities in the ways x and y relate to 
elements of V.  

    Then, to form the Quillian network corresponding to a given network of emergence, one must 
simply create a new link between each two nodes, and weight it with the contextual distance 
between the entities stored at the nodes, relative to the other entities in the memory.  

    The structurally associative memory network refers to a deeper level than the Quillian 
network, but it is fully compatible with the Quillian network. It therefore seems reasonable to 
hypothesize that anything which the Quillian network explains, the structurally associative 
memory can also explain. However, there are certain phenomena which require a deeper 
analysis, and hence the full power of the structurally associative memory.  

    For example, it will be seen below that the details of the relationship between memory and 
analogy fall into this category. The Quillian network supports avery rough form of analogy based 
on a priori "similarity", but to explain the full subtlety of analogical reasoning, the structurally 
associative memory is required.     In general, it would seem that the Quillian network is not 
really suited to be a large-scale, adaptive, self-organizing memory. The structurally associative 
memory is based on pattern recognition and hence it can easily be modified on the basis of new 
pattern recognitions. And the STRAM stores more refined data: it stores information about the 
type  of relation between two entities.  

    The remainder of this chapter will be devoted to showing that the STRAM is capable of 
functioning as a large-scale, adaptive, self-organizing memory; and showing how its structure 
relates to analogical reasoning.  

7.2 Implications of Structurally Associative Memory  

    Let us now return to the problem of how a STRAM is to maintain its approximate network-of-
emergence structure. One way to approach this optimization problem is via the multilevel 
methodology (Goertzel, 1989). This application of the multilevel methodology bears a strong 
similarity to Achi Brandt's (1985) multilevel algorithm for the Ising spin problem.       

    The first level would be the following procedure:  

1) assign nodes to any newly-introduced functions, and single out a number of  

pre-existing nodes, in such a way that the nodes assigned and selected are  

approximately evenly distributed across the network (so that no two are too  

close to each other). Call these functions xi and their nodes N(xi).  
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2) switch the node of each of these functions xi with the node of one of the  

functions y with which it shares a pattern -- that is, assign xi node N(y) and y node N(xi) -- and 
see if, according to the new arrangement, the total amount of pattern which the network indicates 
in xi and y is greater. If so, let N(xi)=N(y) and let N(y)=N(xi) -- that is, make the switch 
permanent -- and apply Step 2 to xi again. If not, proceed to one of the other functions y with 
which xi shares a pattern (say, proceeding through the xi in order of decreasing intensity of 
shared pattern). Once all the functions with which xi shares more than e (some small fixed 
number) worth of pattern have been exhausted, exit Step 2.  

This algorithm moves functions through the network toward their "proper position." The 
problem is that, even if xi is not in its optimal position, its position could well be better for it than 
the positions of its neighbors. Ideally, one might like to try each xi out in every possible position; 
and although this is not possible, one may indeed improve upon the "neighbors-only" approach.  

    Following the multilevel methodology, one could seek to find the optimum node for xi among 
those nodes at a distance between h1 and h2 from xi in the network (where the distance between 
two nodes is measured by the number of links separating them). One could attempt this by the 
Monte Carlo method,randomly seeking to switch xi with functions in this region, or one could 
attempt this by randomly beginning the neighbors-only search given above from points in this 
region.  

    And if one found a new home for xi in this region, one could execute the neighbors-only 
search from the new home. And from the answer which this yielded, one could execute the 
second-level search. And one could repeat this entire process according on an arbitrary number 
of levels, according to the basic framework outlined in Chapter 2.  

    Of course, this is only one possibility; the multilevel philosophy could be applied in many 
different ways, and there are many other approaches to optimization. The important point is that, 
by some specially-tailored optimization method, the network must continually reorganize itself 
so as to better approximate the network of emergence structure, and so as to integrate new data in 
a manner which maintains this structure. It would seem to be completely impossible to 
determine, at this stage, the actual method by which the human brain reorganizes its memory 
network.  

HOLISTIC MEMORY  

    It might seem that no organism could afford to continually subject its memory to such a risky, 
speculative optimization algorithm as that sketched above. It could be, of course, that there exists 
some optimization algorithm which is substantially more effective than those presently known. 
However, as emphasized in Chapter 2, most researchers doubt if there will ever exist a rapid, 
highly accurate algorithm for the solution of difficult optimization problems. In the context of 
associative memory, rapidity is of the essence, so it is probably true that rough approximate 
answers must suffice.  
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    If one were designing a brain, one way of partially eliminating the risk involved in adjusting 
memory according to a highly approximate algorithm would be to provide it with a large number 
of structurally associative memories, each storing largely the same functions. In fact, it has often 
been observed that biological memory is holistic in the sense that it appears to "store almost 
everything almost everywhere". Any small section of the cortex appears to contain a large part of 
the data which the cortex stores. This an empirical observation, validated repeatedly in the 
laboratory (Hubel, 1988).  

    It has been suggested that holistic memory is necessary because of the error-prone nature of 
the brain's components. This is almost certainly true. However, the present considerations 
suggest another good reason: the nature of structurally associative memory seems to require that 
memory structure be continually subjected to radical, experimental transformations. In order for 
these transformations not to interfere too much with continual memory use, the mind must 
incorporate some sort of "workspace" in which unsuccessful transformations may be tried and 
discarded without global effect. In short: holistic memory may be necessary not only because of 
the error-prone natureof the brain's "hardware", but also because of the error-prone nature of 
high-level mental process.  

PHYSICAL MEMORY STRUCTURES  

    In this context, let us return to the question of physical memory. A physical memory is, 
obviously, not a weighted graph. Nonetheless we would like to call certain physical memories 
structurally associative memories. Therefore it is necessary to assign to each physical memory M 
a set of "naturally correspondent" structurally associative memories. We know of no completely 
satisfactory way of doing this, but the following scheme is not unreasonable. It requires only that 
we assign to each pair of elements (x,y) stored by M a distance DM(x,y) which measures the 
difficulty of locating x in memory given that y has very recently been located. Let F be a 
mapping which takes the set S of elements stored by M into the nodes of a graph; let L(x,y) 
denote the number of links in the graph F(S) along the shortest path from(x) to F(y). Then the 
accuracy with which F represents M may be defined by the average, over all (x,y), of %L(x,y)-
DM(x,y)%. This definition requires that, in a rough sense, distance in the memory M correspond 
to distance in the graph F(S). Certainly there is more to be done in this direction, but the point is 
that it is indeed possible to model any sort of memory as a graph, and hence to analyze any sort 
of memory as structurally associative memory.  

MEMORY AND ANALOGY  

    Finally, we must now explore the manner in which a structurally associative memory may be 
utilized by cognitive processes. In the notation of the definition of analogy given above, consider 
that f and y have already been chosen. The process of selection will be discussed briefly a bit 
later. Then, given x, an appropriate x% may be located by a simple process of "looking up" in 
STRAM.  

    In the case of structural analogy all that is required is to look for something which has a large 
amount of pattern in common with x. Specifically, a list must be made of the significant patterns 
in x, and then the other functions in which these functions are also patterns must be searched, 
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with the objective of locating those which have a large number of these patterns in common. 
This may be a large search, and it will have to be approximate -- e.g. a Monte Carlo search could 
be implemented, skipping over at random some of the neighbors. The point is that the making of 
the list of patterns in x, and of neighbors which may also possess these patterns, is merely a 
matter of looking at the actual graph of the network. Of course, this method will only be accurate 
to the extent that the STRAM approximates the network of emergence structure.  

    In the case of contextual analogy, a list must be made of all the patterns which emerge 
between x and v, and then a search of the neighbors of thesepatterns must be made, until a 
function x% is located such that many of the same patterns emerge between it and some other 
entity v%.  

    If f is not the identity mapping, then things are slightly more involved. One knows only that 
f(x%) is close to x in the network; one knows nothing about x% itself. So, in general, a list must 
be made of all the patterns which emerge in x or between x and w, and then a search of the 
neighbors of these patterns must be made, until an entity z is located such that many of the same 
patterns emerge between it and some other entity w%. Then x% may be set equal to f-1(z). This 
involves the potentially difficult computation of f-1, and it is generally much more difficult than 
structural or contextual analogy. However, as suggested earlier, even speculative modeling 
analogy may be useful, as in brainstorming.  

    The location of x% is Step 1 of the general process of analogy. The next step is the recognition 
of patterns in x%. This process may be decomposed into two stages: isolating the patterns 
already "known" by STRAM to be part of the structure of x%, and finding new patterns not yet 
"known" by STRAM. Of course, if f is the identity mapping, then it is trivial to locate all patterns 
in x' that have been identified by STRAM; in fact, this was already done to some degree of 
approximation in the selection of x%. In this case the first stage is very easy to execute. But if f 
is not the identity, then in order to find out what STRAM knows about x%, one must search 
through STRAM for x% (remember,it is f(x%) which is near x, not necessarily x% itself). One 
may treat this search as a minimization, over the space of all nodes of STRAM, of the function 
d#(x,x%). It would not be wise to execute this minimization by local search (from each node 
proceeding to that neighboring node which minimizes the function), because the structure of 
STRAM is almost certainly imperfect; a focused Monte Carlo search, a simulated annealing 
search, or a multilevel search would be much more effective.  

    The second stage of Step 2, the location of new patterns in x%, will be implicitly addressed 
later, when we discuss pattern recognition in general.  

7.3 Image and Process  

    In Section 7.2 I explained the structurally associative memory by analogy to Quillian 
networks. But, as hinted there, the Quillian network has several undesirable properties not shared 
by the STRAM. Some of these are relatively technical, such the fact that the Quillian network 
has no connection with the details of analogical reasoning. But there are also more philosophical 
differences. In particular, I will argue that there are absolutely crucial phenomena which the 
Quillian network cannot even begin to explain.  
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    What is at issue here is what Israel Rosenfeld (1988, p.3) has called  

        a myth that has probably dominated human thought ever since human beings began to write 
about themselves: namely, that we can accurately remember people, places and things because 
images of them have been imprinted and permanently stored in our brains; and that, though we 
maynot be conscious of them, these images are the basis of recognition and hence of thought and 
action.  

In Rosenfeld's opinion, a careful examination of classical neurological experiments shows that 
"the fundamental assumption that memories exist in our brains as fixed traces, carefully filed and 
stored, may be wrong" (p.5).  

    For instance, consider the well-known series of experiments carried out by Wilder Penfield, 
beginning in the 1930's. He stimulated various areas of the brain in conscious patients and noted 
that this appeared to elicit recollections of "forgotten memories." At first sight this would seem 
to speak against Rosenfeld's point -- the natural interpretation is that Penfield was touching the 
areas of the brain in which those memories were stored. But actually things are not so clear. 
Recent experiments show that these forgotten memories are actually "fragmentary impressions, 
like pieces of a dream, containing elements that are not part of the patient's past experiences" (p. 
7).  

    Also, these forgotten memories occur only when the brain stimulation is simultaneous activity 
with the limbic system. Since the limbic system is the seat of emotion, this is evidence in favor 
of Freud's observation that memory without emotion would be unrecognizable. As Gloor et al 
(1982) put it, describing their observations of epileptic patients:  

        [W]hatever we experience with our senses... even after it has been elaborated as a percept in 
the temporal neocortex, must ultimately be transmitted to limbic structures in order to assume 
experiential immediacy. This may... imply that all consciously perceived events must assume 
kind sort of affective dimension, if only ever so slight.  

    Rosenfeld proposes that, rather than storing traces, memory stores procedures. According to 
him, what happened in Penfield's experiments was that certain processes were activated, which 
then constructed the so-called forgotten memories on the spur of the moment, based partly on 
emotional factors and partly on information somehow stored in nearby parts of the cortex.  

    Further support for this point of view is given by the work of Mahl et al (1964), who observed 
these forgotten memories depend significantly upon "the patient's mental content at the time of 
stimulation." Sometimes they may not be memories at all, but merely rearrangements of the 
ideas which occupied the patient's mind just prior to stimulation.  

    No one denies that part of memory consists of procedures. For instance, every time we form a 
spoken word from its syllables, we are applying certain phonological procedures. However, most 
contemporary psychologists would agree with Broca, who argued in 1861 that there is a crucial 
structural difference between the image-based memory responsible for the storage of words and 



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

96

their meanings, and the procedural "memory for the movements necessary for articulating 
words."  

    Against such arguments, Rosenfeld summons an impressive variety of evidence. In each case, 
a phenomenon which at first appears to depend onimage-based memory is seen to require 
procedural memory. For instance, he refers to David Marr's demonstration that shapes can be 
recognized as shapes without any reference to previous knowledge, merely by executing certain 
procedures on the appropriate visual stimuli. This shows that shape recognition probably does 
not depend upon searching a memory store of shapes until a match is found -- it may, rather, be a 
matter of summoning appropriate procedures from the memory. But if shape recognition does 
not require a store of shapes, then why should memory contain such a store at all?  

    Rosenfeld admits that "Marr did not totally abandon the idea of fixed memories, since 
ultimately the naming of a shape required, in his scheme, a memory search" (p. 113). To 
Rosenfeld, this is the major limitation of Marr's approach. However, it seems to me that this 
shows exactly where Rosenfeld goes too far. Clearly he is right that the brain does not hold, 
somewhere in its memory, little pictures of circles or ellipses or squares. Rather, it stores certain 
procedures or functions which characterize these shapes. But this fact does not imply all that he 
says it does.  

    For the purpose of illustration, let us consider a highly oversimplified example. Let y denote 
the function which, from P and r, generates the circle with radius r and center P; and let z=(P,r). 
Then, roughly speaking, we may say that a certain collection of stimuli x is "representable as a 
circle" to the extent that (y,z) is a pattern in x. For each shape, there will be one or more such 
characterizing patterns. I do not mean to imply that the mind stores shapes by fitting them to 
their standard mathematical equations, but only that it characterizes shapes by certain 
"symmetries" or "computational shortcuts" which manifest themselves as patterns. Algebraic 
equations are one kind of specifying pattern, but not the only kind. For example, one of the 
patterns characterizing the shape "square" might be "invariance under reflection and ninety-
degree rotation".  

    Let us suppose, then, that in the mind's "language" each shape is a certain collection of 
characterizing procedures. Then what is wrong with calling this collection a "label" or "trace" of 
the shape? It seems clear that, in general, a mind would do best to store such collections in 
proximity to each other. After all, they will very often be used to recognize the same shapes.  

    Rosenfeld thinks Marr is wrong to speak of a "memory search". But does he believe that a 
mind always immediately selects the most appropriate procedures? If a mind recognizes a shape 
by recognizing certain symmetries and other patterns in it, then what could possibly be wrong 
with the hypothesis that the mind has to search a little to determine the appropriate patterns?  

    A careful study of Rosenfeld's book reveals that the structurally associative memory accounts, 
schematically at least, not only for Marr's work but for all the phenomena which Rosenfeld 
adduces against the image-based model of memory. From the fact that most memory relies on 
procedures, one cannot conclude that these procedures are not organized and accessed according 
to a network structure. Returning to Quillian networks, I agree with Rosenfeld that "chair" is 
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stored in the memory as a collections of procedures for determiningwhat is a chair. But I still 
maintain that the Quillian network can be a useful approximation to the actual network of 
interrelations between the procedures associated with various entities.  

INFORMATION AND RELATION  

    Extending this point of view, I concur with Erlich (1979, p. 200) that each item stored in 
memory should be "considered capable, by rights, of performing two different functions: the 
informative function and the relational function." That is: each item in memory is acted on by 
other items in memory, and also acts on other items in memory. The Quillian approach 
emphasizes the static, "acted-upon" aspect of memory; whereas the Rosenfeld approach stresses 
the dynamic, procedural, "acting-on" aspect, and considers actions on external stimuli as well as 
other memory items.  

    For instance, "chair", "house", "meal" and so forth are collections of procedures which act 
very little to transform other entities in memory -- mainly they act on external stimuli. But 
logical and mathematical structures, as well as words such as "in", "on" and "besides", are 
primarily relational: they are collections of procedures which serve primarily to act on other 
entities stored in memory.  

    More precisely, what I mean here by "A acts on B" is simply: "A is a function which takes B 
as arguments." Those entities which are patterns between other entities in memory will thus "act 
on" many other entities. This definition is validated by the fact that such entities will very often 
be invoked by analogical searches proceeding from B to A; and by the fact that if A acts on B, 
recognition of B as a pattern in an entity will often be followed by recognition of A.  

    In sum: the STRAM is a memory model which 1) accounts for the procedural nature of 
memory, 2) recognizes the approximative value of static semantic networks, 3) explains the self-
organizing, generative nature of memory, and 4) acknowledges the intricate structural 
interdependence of memory with cognition.  

SPARSE DISTRIBUTED MEMORY  

     Another way to look at this dichotomy is to observe that the STRAM is superficially similar 
to Kanerva's (1988) "sparse distributed memory", in which entities are coded as binary sequences 
and stored, each in several places, near other sequences that are "similar". Kanerva measures 
similarity by the Hamming distance -- the fewer places in which two sequences differ, the more 
similar they are. This is ideal for a memory storing images of physical objects, which may be 
conveniently characterized by a list of binary qualities. For instance, one could associate with a 
physical object A a binary sequence a1...an as follows: a1 is 1 if and only if the object is red, a2 is 
1 if and only if the objectis green, a77 is 1 if and only if the object is dirty, etc. Given any such 
assignation of sequences to objects, the similarity of two objects A and B could be plausibly 
measured by the number of places in which the sequences a1...an and b1...bn differed.  

    But for a memory storing relations, procedures and so forth, it is much more direct to measure 
similarity structurally, as is done in the STRAM. It would certainly be possible to encode 
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complete information about a complex procedure in a binary sequence. This possibility lies at the 
core of algorithmic information theory. But this is not a natural way to relate procedures. To 
make the Hamming distance mesh smoothly with analogical reasoning, one would have to 
enumerate all possible patterns w1,...,wm, and assign each entity A a binary sequence a1,...,an 
based on the formula: for some fixed C, and 0%r<k, amk+r=1 if and only if wm is a pattern in A 
with intensity greater than rC but less than (r+1)C.  

    Given this setup, Kanerva's sparse distributed memory would be extremely similar to the 
STRAM. But it would completely ignore the fact that the procedures being stored were 
procedures and not merely images of physical objects. The emphasis would be informational. 
The STRAM gives equal balance to the informational and relational functions of the entities 
stored in memory.  

 

8      

Deduction  

8.0 Deduction and Analogy in Mathematics  

    In mathematical logic, deduction is analyzed as a thing in itself, as an entity entirely 
independent from other mental processes. This point of view has led to dozens of beautiful ideas: 
Godel's Incompleteness Theorem, the theory of logical types, model theory, and so on. But its 
limitations are too often overlooked. Over the last century, mathematical logic has made 
tremendous progress in the resolution of technical questions regarding specific deductive 
systems; and it has led to several significant insights into the general properties of deductive 
systems. But it has said next to nothing about the practice of deduction. There is a huge distance 
between mathematical logic and the practice of logic, and mathematical logic seems to have 
essentially lost interest in closing this gap.  

    Let us consider, first of all, deduction in mathematics. What exactly is it that mathematicians 
do? Yes, they prove theorems -- that is, they deduce the consequences of certain axioms. But this 
is a highly incomplete description of their activity. One might just as well describe their work as 
detecting analogies between abstract structures. This process is just as universal to 
mathematical practice as the deduction of consequences of axioms. The two are inseparable. 
    No one proves a theorem by randomly selecting a sequence of steps. And very little theorem 
proving is done by logically deducing sequences of steps. Generally, theorems are proved by 
intuitively selecting steps based on analogy to proofs one has done in the past. Some of this 
analogy is highly specific -- e.g. proving one existence theorem for partial differential equations 
by the same technique as another. And some of it is extremely generalized -- what is known as 
"mathematical maturity"; the ability, gleaned through years of studious analogical reasoning, to 
know "how to approach" a proof. Both specific and general analogy are absolutely indispensable 
to mathematical research.  
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    Uninteresting mathematical research often makes use of overly specific analogies -- the 
theorems seem too similar to things that have already been done; frequently they merely 
generalize familiar results to new domains. Brilliant research, on the other hand, makes use of far 
subtler analogies regarding general strategies of proof. Only the most tremendously, 
idiosyncratically original pieceof work does not display numerous analogies with past work at 
every juncture. Occasionally this does occur -- e.g. with Galois's work on the unsolvability in 
radicals of the quintic. But it is very much the exception.  

    It might be argued that whereas analogy is important to mathematics, deduction from axioms 
is the defining quality of mathematics; that deduction is inherently more essential. But this does 
not stand up to the evidence. Even in Galois's work, there is obviously some  evidence of 
analogical reasoning, say on the level of the individual steps of his proof. Although his overall 
proof strategy appears completely unrelated to what came before, the actual steps are not, taken 
individually, all that different from individual steps of past proofs. Analogical reasoning is 
ubiquitous, in the intricate details of even the most ingeniously original mathematical research.  

    And we must not forget Cauchy, one of the great mathematicians despite his often sloppy 
treatment of logical deduction. Cauchy originated a remarkable number of theorems, but many of 
his proofs were intuitive arguments, not deductions of the consequences of axioms. It is not that 
his proofs were explicitly more analogical than deductive -- they followed consistent deductive 
lines of thought. But they did not proceed by rigorously deducing the consequences of some set 
of axioms; rather they appealed frequently to the intuition of the reader. And this intuition, or so 
I claim, is largely analogical in nature.  

It is clear that both deduction and analogy are ubiquitous in mathematics, and both are present to 
highly varying degrees in the work of various mathematicians. It could be protested that 
Cauchy's proofs were not really mathematical -- but then again, this judgment may be nothing 
more than a reflection of the dominance of mathematical logic during the last century. Now we 
say that they are not mathematical because they don't fit into the framework of mathematical 
logic, in which mathematics is defined as the step-by-step deduction of the consequences of 
axioms. But they look mathematical to anyone not schooled in the dogma of mathematical logic.  

    In sum: it is futile to try to separate the process of deduction of the consequences of axioms 
from the process of analogy with respect to abstract structures. This is true even in mathematics, 
which is the most blatantly deductive of all human endeavors. How much more true is it in 
everyday thought?  

8.1 The Structure of Deduction  

    Let S be any set, and let I={I1, I2, ..., In} be a subset of S, called the set of assumptions . Let 
SN denote the Cartesian product SxSxSx...xS, taken N times. And let T={T1,T2,...,Tn} be a set of 
transformations ; that is, a set of functions each of which maps some subset of SN into some 
subset of S. For instance, if S were a set of propositions, one might have T1(x,y)= x and y.  

    Let us now define the set D(I,T) of all elements of S which are derivablefrom the assumptions 
I via the transformations T. First of all, it is clear that I should be a subset of D(I,T). Let us call 
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the elements of I the depth-zero elements of D(I,T). Next, what about elements of the form 
x=Ti(A1,...,Am), for some i, where each Ak=Ij for some j? Obviously, these elements are simple 
transformations of the assumptions; they should be elements of D(I,T) as well. Let us call these 
the depth-one  elements of D(I,T). Similarly, we may define an element x of S to be a depth-n 
element of D(I,T) if x=Ti(A1,...,Am), for some i, where each of the Ak is a depth-p element of 
D(I,T), for some p<n. Finally, D(I,T) may then be defined as the set of all x which are depth-n 
elements of D(I,T) for some n.  

    Deductive reasoning is nothing more or less than the construction of elements of D(I,T), given 
I and T. If the T are the rules of logic and the I are some set of propositions about the world, then 
D(I,T) is the set of all propositions which are logically equivalent to some subset of I. In this case 
deduction is a matter of finding the logical consequences of I, which are presumably a small 
subset of the total set S of all propositions.  

8.2 Paraconsistency  

    Contemporary mathematical logic is not the only conceivable deductive system. In fact, I 
suggest that any deductive system which relies centrally upon Boolean algebra, without 
significant external constraints, is not even qualified for the purpose of general mental 
deduction. Boolean algebra is very useful for many purposes, such as mathematical deduction. I 
agree that it probably plays an important role in mental process. But it has at least one highly 
undesirable property: if any two of the propositions in I contradict each other, then D(I,T) is the 
entire set S of all propositions. From one contradiction, everything is derivable.  

    The proof of this is very simple. Assume both A and -A. Then, surely A implies A+B. But 
from A+B and -A, one may conclude B. This works for any B. For instance, assume A="It is true 
that my mother loves me". Then -A="It is not true that my mother loves me". Boolean logic 
implies that anyone who holds A and -A -- anyone who has contradictory feelings about his 
mother's affection -- also, implicitly, holds that 2+2=5. For from "It is true that my mother loves 
me" he may deduce "Either it is true that my mother loves me, or else 2+2=5." And from "Either 
it is true that my mother loves me, or else 2+2=5" and "It is not true that my mother loves me," 
he may deduce "2+2=5."  

    So: Boolean logic is fine for mathematics, but common sense tells us that human minds 
contain numerous contradictions. Does a human mind really use a deductive system that implies 
everything? It appears that somehow we keep our contradictions under control. For example, a 
person may contradict himself regarding abortion rights or the honesty of his wife or the ultimate 
meaning of life -- and yet, when he thinks about theoretical physics or parking his car, hemay 
reason deductively to one particular conclusion, finding any contradictory conclusion ridiculous.  

    It might be that, although we do use the "contradiction-sensitive" deduction system of standard 
mathematical logic, we carefully distinguish deductions in one sphere from deductions in 
another. That is, for example, it might be that we have separate deductive systems for dealing 
with physics, car parking, domestic relations, philosophy, etc. -- so that we never, in practice, 
reason "A implies A+B", unless A and B are closely related. If this were the case, a contradiction 
in one realm would destroy only reasoning in that realm. So if we contradicted ourselves when 
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thinking about the meaning of life, then this might give us the ability to deduce any statement 
whatsoever about other philosophical issues -- but not about physics or everyday life.  

    In his Ph.D. dissertation, daCosta (1984) conceived the idea of a paraconsistent logic, one in 
which a single contradiction in I does not imply that D(I,T)=S. Others have extended this idea in 
various ways. Most recently, Avram (1990) has constructed a paraconsistent logic which 
incorporates the "relevance logic" discussed in the previous paragraph. Propositions are divided 
into classes and the inference from A to A+B is allowed only when A and B are in the same 
class.  

    I suggest that Boolean logic is indeed adequate for the purpose of common-sense deduction. 
My defense of this position comes in two parts. First, I believe that Avron is basically right in 
saying that contradictions are almost always localized. To be precise, I hypothesize that a mind 
does not tend to form the disjunction A+B unless %%[(St(A%v)-St(v)]-[St(B%w)-St(w)]%% is 
small for some (v,w).  

    I do not think it is justified to partition propositions into disjoint sets and claim that each entity 
is relevant only to those entities in the same set as it. This yields an elegant formal system, but of 
course in any categorization there will be borderline cases, and it is unacceptable to simply 
ignore them away. My approach is to define relevance not by a partition into classes but rather 
using the theory of structure. What the formulation of the previous paragraph says is that two 
completely unrelated entities will only rarely be combined in one logical formula.  

    However, there is always the possibility that, by a fluke, two completely unrelated entities will 
be combined in some formula, say A+B. In this case a contradiction could spread from one 
context to another. I suspect that this is an actual danger to thought processes, although certainly 
a rare one. It is tempting to speculate that this is one possible route to insanity: a person could 
start out contradicting themselves only in one context, and gradually sink into insanity by 
contradicting themselves in more and more different contexts.  

    This brings us to the second part of the argument in favor of Boolean logic. What happens 
when contradictions do arise? If a contradiction arises in a highly specific context, does it remain 
there forever, thus invalidating all future reasoning in that context? I suspect that this is possible. 
But, as will be elaborated in later chapters, I suggest that this is rendered unlikely by the 
overallarchitecture of the mind. It is an error to suppose that the mind has only one  center for 
logical deduction. For all we know, there may be tens of thousands of different deductive 
systems operating in different parts of the brain, sometimes perhaps more than one devoted to the 
same specialized context. And perhaps then, as Edelman (1987) has proposed in the context of 
perception and motor control, those systems which fail to perform a useful function will 
eventually be destroyed and replaced. If a deductive system has the habit of generating arbitrary 
propositions, it will not be of much use and will not last. This idea is related to the automata 
networks discussed in the final chapter.  

    One thing which is absolutely clear from all this is the following: if the mind does use 
Boolean logic, and it does harbor the occasional contradiction, then the fact that it does not 
generate arbitrary statements has nothing to do with deductive logic. This is one important sense 



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

102

in which deduction is dependent upon general structure of the mind, and hence implicitly on 
other forms of logic such as analogy and induction.  

8.3 Deduction Cannot Stand Alone   

    When deduction is formulated in the abstract, in terms of assumptions and transformation, it is 
immediately apparent that deductive reasoning is incapable of standing on its own. In isolation, it 
is useless. For why would there be intrinsic value in determining which x lie in D(I,T)? Who 
cares? The usefulness of deduction presupposes several things, none of them trivial:  

1. the elements of I must be accepted to possess some type of     validity.  

2. it must be assumed that, if the elements of I are important  

     in this sense, then the elements of D(I,T) are also valid in this sense.  

3. it must be the case that certain of the elements of D(I,T) are important in some sense.  

    The first requirement is the most straightforward. In mathematical logic, the criterion of 
validity is truth. But this concept is troublesome, and it is not necessary for deduction. 
Psychologically speaking, validity could just as well mean plausibility.  

    The second requirement is more substantial. After all, how is it to be known that the elements 
of D(I,T) will possess the desired properties? This is a big problem in mathematical logic. Using 
predicate calculus, one can demonstrate that if I is a set of true propositions, every statement 
derivable from I according to the rules of Boolean algebra is also true. But Boolean algebra is a 
very weak deductive system; it is certainly not adequate for mathematics. For nontrivial 
mathematics, one requires the predicate calculus. And no one knows how to prove that, if I is a 
set of true propositions, every statement derivable from I according to the rules of predicate 
calculus is true.  

    Godel proved that one can never demonstrate the consistency of anysufficiently powerful, 
consistent formal system within that formal system. This means, essentially, that if validity is 
defined as truth then the second requirement given above can never be verified by deduction.  

    To be more precise: if validity is defined as truth, let us say T is consistent if it is the case that 
whenever all the elements of I are true, all the elements of D(I,T) are true. Obviously, in this case 
consistency corresponds to the second requirement given above. Godel showed that one can 
never prove T is consistent using T. Then, given a deductive system (I,T), how can one 
deductively demonstrate that T is consistent? -- i.e. that the second requirement given above is 
fulfilled? One cannot do so using T, so one must do so in some other deductive system, with a 
system of transformations T1. But if one uses T1 to make such a demonstration, how can one 
know if T1 is consistent? If T1 is inconsistent, then the demonstration means nothing, because an 
in an inconsistent system one can prove anything whatsoever. In order to prove T1 is consistent, 
one must invoke some T2. But in order to prove T2 is consistent, one must invoke some T3. Et 
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cetera. The result is that, if validity is defined as truth, one can never use deduction to prove that 
the results of a given set of transformations are valid.  

    Yet we believe in mathematics -- why? By induction, by analogy, by intuition. We believe in 
it because, at bottom, it feels right. It's never led us wrong before, says induction. It worked in all 
these other, similar, cases, so it should work here -- says analogy. Even if validity is defined as 
truth, a recourse to induction and analogy is ultimately inevitable.  

    If validity is defined, say, as plausibility, then the situation is even worse. Clearly, any true 
statement is plausible, so that it's at least as hard to justify plausible reasoning as it is to justify 
"certain" reasoning. And, furthermore, the very concept of "plausibility" refers to induction and 
analogy. In sum, I contend that, in general and in specific cases, deduction is only justifiable by 
recourse to induction and analogy.  

ANALOGY GUIDES DEDUCTION  

    Finally, let us consider the third requirement for the usefulness of deduction: certain of the 
elements of D(I,T) must be somehow important. Otherwise deduction would simply consist of 
the haphazard generation of elements of D(I,T). This is not the case. In mathematics or in 
everyday life, one wants to deduce things which are useful, beautiful, interesting, etc. This gives 
rise to the question: how does one know how to find the important elements of D(I,T)?  

    It seems clear that this is a matter of analogical reasoning. For instance, suppose one has a 
particular entity x in mind, and one wants to know whether x is an element of D(I,T). Or suppose 
one has a particular property P in mind, and one wants to find an element x of D(I,T) which has 
this property. How does one proceed? To an extent, by intuition -- which is to say, to an extent, 
one does not consciously know how one proceeds. But insofar as one makesconscious decisions, 
one proceeds by considering what has worked in the past, when dealing with an entity x or a 
property P which is similar to the one under consideration.  

    For example, when studying mathematics, one is given as exercises proofs which go very 
much like the proofs one has seen in class or in the textbook. This way one knows how to go 
about doing the proofs; one can proceed by seeing what was done in similar cases. After one has 
mastered this sort of exercise, one goes on to proofs which are less strictly analogous to the 
proofs in the book -- because one has grasped the subtler patterns among the various proofs; one 
has seen, in general, what needs to be done to prove a certain type of theorem.  

    Above I argued that deduction is only justifiable by analogy. Here the point is that deduction 
is impotent without analogy: that in order to use deduction to work toward any practical goal, 
one must be guided by analogy. Otherwise one would have no idea how to go about constructing 
a given proof.  

    This is, I suggest, exactly the problem with automatic theorem provers. There are computer 
programs that can prove simple theorems by searching through D(I,T) according to a variety of 
strategies. But until these programs implement some form of sophisticated analogy -- 
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systematically using similar strategies to solve similar problems -- they will never proceed 
beyond the most elementary level.  

USEFUL DEDUCTIVE SYSTEMS  

    Another consequence of this point of view is that only certain deductive systems are of any 
use: only those systems about which it is possible to reason by analogy. To be precise, let x and 
y be two elements of D(I,T), and let GI,T(x) and GI,T(y) denote the set of all proofs in (I,T) of x 
and y respectively.  

Definition 8.1: Let (I,T) be any deductive system, and take a>0.  

    Let U equal the minimum over all v of the sum a%v%+B, where B is the average, over all 
pairs (x,y) so that x and y are both in D(I,T), of the correlation coefficient between d#[St(x%v)-
St(x),St(y%v)-St(v)] and dI[GI,T(x),GI,T(y)]%. Then (I,T) is useful to degree U.  

    The relative distance dI[GI,T(x),GI,T(y)] is a measure of how hard it is to get a proof of x out of 
a proof of y, or a proof of y out of a proof of x. If v were assumed to be the empty set, then 
%d#[St(x%v)-St(x),St(y%v)-St(v)] - d[GI,T(x),GI,T(y)]% would reduce to %dI(x,y) - 
d[GI,T(x),GI,T(y)]%. The usefulness U would be a measure of how true it is that structurally 
similar theorems have similar proofs.  

    But in order for a system to be useful, it need not be the case that structurally similar theorems 
have similar proofs. It need only be the case that there is some system for determining, given any 
theorem x, which theorems y are reasonablylikely to have similar proofs. This system for 
determining is v. In the metaphor introduced above in the section on contextual analogy, v is a 
codebook. A deductive system is useful if there is some codebook v so that, if one decodes x and 
y using v, the similarity of the resulting messages is reasonably likely to be close to the similarity 
of the proofs of x and y.  

    The constant a measures how much the complexity of the codebook v figures into the 
usefulness of the system. Clearly, it should count to some degree: if v is excessively complex 
then it will not be much use as a codebook. Also, if v is excessively complex then it is extremely 
unlikely that a user of the system will ever determine v.  

    Mathematically speaking, the usefulness of traditional deductive systems such as Boolean 
algebra and predicate calculus is unknown. This is not the sort of question that mathematical 
logic has traditionally asked. Judging by the practical success of both systems, it might seem that 
their usefulness is fairly high. But it should be remembered that certain parts of D(I,T) might 
have a much higher usefulness than others. Perhaps predicate calculus on a whole is not highly 
useful, but only those parts which correspond to mathematics as we know it.  

    It should also be remembered that, in reality, one must work with dS rather than d#, and also 
with a subjective estimate of % %. Hence, in this sense, the subjective usefulness of a deductive 
system may vary according to who is doing the deducing. For instance, if a certain codebook v is 
very complicated to me, then a deductive system which uses it will seem relatively useless to me; 
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whereas to someone who experiences the same codebook as simple, the system may be 
extremely useful.  

DEDUCTION, MEMORY, INDUCTION  

    If the task of intelligence is essentially inductive, where does deduction fit in? One way to 
approach this question is to consider a deductive system as a form of memory. Deduction may 
then be understood as an extremely effective form of data compaction. Instead of storing tens of 
thousands of different constructions, one stores a simple deductive system that generates tens of 
thousands of possible constructions. To see if a given entity X is in this "memory" or not, one 
determines whether or not X may be derived from the axioms of the system. And, with a 
combination of deduction and analogy, one can determine whether the "memory" contains 
anything possessing certain specified properties.  

    Of course, a deductive system is not formed to serve strictly as a memory. One does not 
construct a deductive system whose theorems are precisely those pieces of information that one 
wants to store. Deductive systems are generative. They give rise to new constructions, by 
combining things in unforeseeable ways. Therefore, in order to use a deductive system, one must 
have faith in the axioms and the rules of transformation -- faith that they will not generate 
nonsense, at least not too often.  

    How is this faith to be obtained? Either it must be "programmed in", or it must be arrived at 
inductively. AI theorists tend to implicitly assume that predicate calculus is inherent to 
intelligence, that it is hard-wired into every brain. This is certainly a tempting proposition. After 
all, it is difficult to see how an organism could induce a powerful deductive system in the short 
period of time allotted to it. It is not hard to show that, given a sufficiently large set of statements 
X, one may always construct a deductive system which yields these statements as theorems and 
which is a pattern in X. But it seems unlikely that such a complex, abstract pattern could be 
recognized very often. What the AI theorists implicitly suggest is that, over a long period of 
time, those organisms which did recognize the pattern of deduction had a greater survival rate; 
and thus we have evolved to deduce.  

    This point of view is not contradicted by the fact that, in our everyday reasoning, we do not 
adhere very closely to any known deductive system. For instance, in certain situations many 
people will judge "X and Y" to be more likely than "X". If told that "Joe smokes marijuana", a 
significant proportion of people would rate "Joe has long hair and works in a bank" as more 
likely than "Joe works in a bank". It is true that these people are not effectively applying Boolean 
logic in their thought about the everyday world. But this does not imply that their minds are not, 
on some deeper level, using logical deduction. I suspect that Boolean logic plays a role in 
"common sense" reasoning as in deeper intuition, but that this role is not dominant: deduction is 
mixed up with analogy, induction and other processes.  

    To summarize: recognizing that deductive systems are useful for data compaction and form 
generation is one thing; exalting deduction over all other forms of thought is quite another. There 
is no reason to assume that deduction is a "better", "more accurate" or "truer" mode of reasoning 
than induction or analogy; and there is no reason to believe, as many AI theorists do, that 
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deduction is the core process of thought. Furthermore, it seems very unlikely that deduction can 
operate in a general context without recourse to analogy. However, because deduction is so 
effective in the context of the other mental processes, it may well be that deduction is essential 
to intelligence.  

 

 

9  

Perception  

      

9.0 The Perceptual Hierarchy  

    In accordance with the philosophy outlined in Chapter 5, I define perception as pattern 
recognition. Pattern recognition is, of course, an extremely difficult optimization problem. In 
fact, the task of recognizing all the patterns in an arbitrary entity is so hard that no algorithm can 
solve it exactly -- this is implied by Chaitin's (1987) algorithmic-information-theoretic proof of 
Godel's Theorem. As usual, though, exact solutions are not necessary in practice. One is, rather, 
concerned with finding a reasonably rapid and reliable method for getting fairly decent 
approximations.  

    I propose that minds recognize patterns according to a multilevel strategy. Toward this end, I 
hypothesize a hierarchy of perceptual levels, each level recognizing patterns in the output of the 
level below it, and governed by the level immediately above it. Schematically, the hierarchy may 
be understood to extend indefinitely in two directions (Fig. 4). It will often be convenient to, 
somewhat arbitrarily, pick a certain level and call it the zero level. Then, for n= ...-3,-2,-1,0, 
1,2,3,..., the idea is that level n recognizes patterns in the output of level n-1, and also 
manipulates the pattern-recognition algorithm of level n-1.  

PHENOMENOLOGY AND PERCEPTION  

    Physically speaking, any particular mind can deal only with a finite segment of this hierarchy. 
Phenomenologically speaking, a mind can never know exactly how far the hierarchy extends in 
either direction.  

    One may analyze consciousness as a process which moves from level to level of the 
perceptual hierarchy, but only within a certain restricted range. If the zero level is taken to 
represent the "average" level of consciousness, and consciousness resides primarily on levels 
from -L to U, then the levels below  
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-L represent perceptions which are generally below conscious perception. And,on the other hand, 
the levels above U represent perceptions that are in some sense beyond conscious perception: 
too abstract or general for consciousness to encompass.  

    Consciousness can never know how far the hierarchy extends, either up or down. Thus it can 
never encounter an ultimate physical reality: it can never know whether a perception comes from 
ultimate reality or just from the next level down.       

    Perception and motor control might be defined as the link between mind and reality. But this 
is a one-sided definition. Earlier we defined intelligence by dividing the universe into an 
organism and an environment. From this "God's-eye" point of view an organism's perceptual and 
motor systems are the link between that organism and its environment. But from the internal 
point of view, from the point of view of the conscious organism, there can be no true or ultimate 
reality, but only the results of perception.  

    Therefore, in a sense, the result of perception is reality; and the study of perception is the 
study of the construction of external reality. One of the aims of this chapter and the next is to 
give a model of perception and motor control that makes sense from both points of view -- the 
objective and the subjective, the God's-eye and the mind's-eye, the biological and the 
phenomenological.  

INPUT VERSUS CENTRAL PROCESSING  

    Fodor (1983) has proposed that, as a general rule, there are a number of significant structural 
differences between input systems  and central processing systems . He has listed nine 
properties which are supposed to be common to all the input systems of the human brain: the 
visual processing system, the auditory processing system, the olfactory and tactile processing 
systems, etc.:  

1. Input systems are domain specific: each one deals only with a certain  

specific type of problem.  

2. Input systems operate regardless of conscious desires; their operation is mandatory.  

3. The central processing systems have only limited access to the  

representations which input systems compute.  

4. Input systems work rapidly.  

5. Input systems do most of their work without reference to what is going on  

in the central processing systems, or in other input systems.  
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6. Input systems have "shallow" output, output which is easily grasped by central processing 
systems.  

7. Input systems are associated with fixed neural architecture.  

8. The development of input systems follows a certain characteristic pace  

and sequence.  

    I think these properties are a very good characterization of the lower levelsof the perceptual 
hierarchy. In other words, it appears that the lower levels of the perceptual hierarchy are strictly 
modularized. Roughly speaking, say, levels -12 to -6 might be as depicted in Figure 5, with the 
modular structure playing as great a role as the hierarchical structure.  

    If, say, consciousness extended from levels -3 to 3, then it might be that the modules of levels 
-12 to -6 melded together below the level of consciousness. In this case the results of, say, visual 
and auditory perception would not present themselves to consciousness in an entirely 
independent way. What you saw might depend upon what you heard.  

HIERARCHY IN HUMAN VISUAL PERCEPTION  

    A decade and a half ago, Hubel and Wiesel (1988) demonstrated that the brain possesses 
specific neural clusters which behave as processors for judging the orientation of line segments. 
Since then many other equally specific visual processors have been found. It appears that Area 
17 of the brain, the primary visual cortex, which deals with relatively low-level vision 
processing, is composed of various types of neuronal clusters, each type corresponding to a 
certain kind of processing, e.g. line orientation processing.  

    And, as well as perhaps being organized in other ways, these clusters do appear to be 
organized in levels. At the lowest level, in the retina, gradients are enhanced and spots are 
extracted -- simple mechanical processes. Next come simple moving edge detectors. The next 
level, the second level up from the retina, extracts more sophisticated information from the first 
level up -- and so on. Admittedly, little is known about the processes two or more levels above 
the retina. It is clear (Uhr, 1987), however, that there is a very prominent hierarchical structure, 
perhaps supplemented by more complex forms of parallel information processing. For instance, 
most neuroscientists would agree that there are indeed "line processing" neural clusters, and 
"shape processing" neural clusters, and that while the former pass their results to the latter, the 
latter sometimes direct the former (Rose and Dobson, 1985).  

    And there is also recent evidence that certain features of the retinal image are processed in 
"sets of channels" which proceed several levels up the perceptual hierarchy without intersecting 
each other -- e.g. a set of channels for color, a set of channels for stereoposition, etc. This is 
modular perception at a level lower than that considered by Fodor. For instance, Mishkin et al 
(1983) have concluded from a large amount of physiological data that two major pathways pass 
through the visual cortex and then diverge in the subsequent visual areas: one pathway for color, 
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shape and object recognition; the other for motion and spatial interrelations. The first winds up in 
the inferior temporal areas; the second leads to the inferior parietal areas.  

    And, on a more detailed level, Regan (1990) reviews evidence for three color channels in the 
fovea, around six spatial frequency channels from each retinal point, around eight orientation 
channels and eight stereomotion channels, two orthree stereoposition channels, three flicker 
channels, two changing-size channels, etc. He investigates multiple sclerosis by looking at the 
level of the hierarchy -- well below consciousness -- at which the various sets of channels 
intersect.  

PARALLEL HIERARCHICAL COMPUTER VISION  

     If one needs to compute the local properties of a visual scene, the best strategy is to hook up a 
large parallel array of simple processors. One can simply assign each processor to a small part of 
the picture; and connect each processor to those processors dealing with immediately 
neighboring regions. However, if one needs to compute the overall global properties of visual 
information, it seems best to supplement this arrangement with some sort of additional network 
structure. The pyramidal architecture (Fig. 6) is one way of doing this.  

    A pyramidal multicomputer is composed of a number of levels, each one connected to the 
levels immediately above and below it. Each level consists of a parallel array of processors, each 
one connected to 1) a few neighboring processors on the same level, 2) one or possibly a few 
processors on the level immediately above, 3) many processors on the level immediately below. 
Each level has many fewer processors than the one immediately below it. Often, for instance, the 
number of processors per level decreases exponentially.  

    Usually the bottom layer is vaguely retina-like, collecting raw physical data. Then, for 
instance, images of different resolution can be obtained by averaging up the pyramid: assigning 
each processor on level n a distinct set of processors on level n-1, and instructing it to average 
the values contained in these processors.  

    Or, say, the second level could be used to recognize edges; the third level to recognize shapes; 
the fourth level to group elementary shapes into complex forms; and the fifth level to compare 
these complex forms with memory.  

    Stout (1986) has proved that there are certain problems -- such as rotating a scene by pi 
radians -- for which the pyramidal architecture will perform little better than its base level would 
all by itself. He considers each processor on level n to connect to 4 other processors on level n, 4 
processors on level n-1, and one processor on level n+1. The problem is that, in this arrangement, 
if two processors on the bottom level need to communicate, they may have to do so by either 1) 
passing a message step by step across the bottom level, or 2) passing a message all the way up to 
the highest level and back down.  

    However, Stout also shows that this pyramidal architecture is optimal for so-called "perimeter-
bound" problems -- problems with nontrivial communication requirements, but for which each 
square of s2 processors on the base level needs to exchange only O(s) bits of information with 
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processors outside that square. An example of a perimeter-bound problem is labeling all the 
connected components of an image, or finding the minimum distance between one component 
and another.  

    In sum, it seems that strict pyramidal architectures are very good at solving problems which 
require processing that is global, but not too global. When a task requires an extreme amount of 
global communications, a parallel architecture with greater interconnection is called for -- e.g. a 
"hypercube" architecture.  

    Thinking more generally, Levitan et al (1987) have constructed a three-level "pyramidal" 
parallel computer for vision processing. As shown in Figure 7, the bottom level deals with 
sensory data and with low-level processing such as segmentation into components. The 
intermediate level takes care of grouping, shape detection, and so forth; and the top level 
processes this information "symbolically", constructing an overall interpretation of the scene. 
The base level is a 512x512 square array of processors each doing exactly the same thing to 
different parts of the image; and the middle level is composed of a 64x64 square array of 
relatively powerful processors, each doing exactly the same thing to different parts of the base-
level array. Finally, the top level contains 64 very powerful processors, each one operating 
independently according to programs written in LISP (the standard AI programming language). 
The intermediate level may also be augmented by additional connections, e.g. a hypercube 
architecture.  

    This three-level perceptual hierarchy appears be an extremely effective approach to computer 
vision. It is not a strict pyramidal architecture of the sort considered by Stout, but it retains the 
basic pyramidal structure despite the presence of other processes and interconnections.  

IS PERCEPTION JUST A BAG OF TRICKS?  

    In sum, it is fairly clear that human perception works according to a "perceptual hierarchy" of 
some sort. And it is also plain that the perceptual hierarchy is a highly effective way of doing 
computer vision. However, there is no general understanding of the operation of this hierarchy. 
Many theorists, such at Uttal (1988), suspect that such a general understanding may be 
impossible -- that perception is nothing more than a largely unstructured assortment of very 
clever tricks. In 1965, Hurvich et al made the following remark, and it is still apt: "the reader 
familiar with the visual literature knows that this is an area of many laws and little order" 
(p.101).  

    I suggest that there is indeed an overall structure to the process. This does not rule out the 
possibility that a huge variety of idiosyncratic tricks are involved; it just implies that these tricks 
are not 100% of the story. The structure which I will propose is abstract and extremely general; 
and I am aware that this can be a limitation. As Uttal has observed,  

        Perceptual psychophysics has long been characterized by experiments specific to a 
microscopically oriented theory and by theories that either deal with a narrowly defined data set 
at one extreme or, to the contrary, a global breadth that is so great that data are virtually 
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irrelevant to theirconstruction. Theories of this kind are more points of view than analyses. 
(p.290)  

Uttal would certainly put the theory given here in the "more point of view than analysis" 
category. However, it seems to me that, if the gap between psychophysical theory and data is 
ever to be bridged, the first step is a better point of view. And similarly, if the gap between 
biological vision and computer vision is ever to be closed, we will need more than just superior 
technology -- we will need new, insightful general ideas. Therefore I feel that, at this stage, it is 
absolutely necessary to study the abstract logic of perception -- even if, in doing so, one is 
guided as much by mathematical and conceptual considerations as by psychophysical or other 
data.  

9.1 Probability Theory  

    The branch of mathematics known as probability theory provides one way of making 
inferences regarding uncertain propositions. But it is not a priori clear that it is the only 
reasonable way to go about making such inferences. This is important for psychology because it 
would be nice to assume, as a working hypothesis, that the mind uses the rules of probability 
theory to process its perceptions. But if the rules of probability theory were just an arbitrary 
selection from among a disparate set of possible schemes for uncertain inference, then there 
would be little reason to place faith in this hypothesis.  

    Historically, most attempts to derive general laws of probability have been "frequentist" in 
nature. According to this approach, in order to say what the statement "the probability of X 
occurring in situation E is 1/3" means, one must invoke a whole "ensemble" of situations. One 
must ask: if I selected an situation from among an ensemble of n situations "identical" to E, what 
proportion of the time would X be true? If, as n tended toward infinity, this proportion tended 
toward 1/3, then it would be valid to say that the probability of X occurring in situation E is 1/3.  

    In some cases this approach is impressively direct. For instance, consider the proposition: 
"The face showing on the fair six-sided die I am about to toss will be either a two or a three". 
Common sense indicates that this proposition has probability 1/3. And if one looked at a large 
number of similar situations -- i.e. a large number of tosses of the same die or "identical" dice -- 
then one would indeed find that, in the long run, a two or a three came up 1/3 of the time.  

    But often it is necessary to assign probabilities to unique events. In such cases, the frequency 
interpretation has no meaning. This occurs particularly often in geology and ecology: one wishes 
to know the relative probabilities of various outcomes in a situation which is unlikely ever to 
recur. When the problem has to do with a bounded region of space, say a forest, it is possible to 
justify this sort of probabilistic reasoning using complicated manipulations of integral calculus. 
But what is really required, in order to justify the generalapplication of probability theory, is 
some sort of proof that the rules of probability theory are uniquely well-suited for probable 
inference.  

    Richard Cox (1961) has provided such a proof. First of all, he assumes that any possible rule 
for assigning a "probability" to a proposition must obey the following two rules:  
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        The probability of an inference on given evidence determines the probability of its 
contradictory on the same evidence (p.3)  

        The probability on given evidence that both of two inferences are true is determined by their 
separate probabilities, one on the given evidence, the other on this evidence with the additional 
assumption that the first inference is true (p.4)  

The probability of a proposition on certain evidence is the probability that logically should be 
assigned to that proposition by someone who is aware only of this evidence and no other 
evidence. In Boolean notation, the first of Cox's rules says simply that if one knows the 
probability of X on certain evidence, then one can deduce the probability of -X on that same 
evidence without using knowledge about anything else. The second rule says that if one knows 
the probability of X given certain evidence E, and the probability that Y is true given EX, then 
one can deduce the probability that Y is true without using knowledge about anything else.  

    These requirements are hard to dispute; in fact, they don't seem to say very much. But their 
simplicity is misleading. In mathematical notation, the first requirement says that P(XY%E)= 
F[(X%E),(Y%XE)], and the second requirement says that P(-X%E)=f[P(X%E)], where F and f 
are unspecified functions. What is remarkable is that these functions need not remain 
unspecified. Cox has shown that the laws of Boolean algebra dictate specific forms for these 
functions.  

    For instance, they imply that G[P(XY%E)] = CG[P(X%E)]G[P(Y%XE)], where C is some 
constant and G is some function. This is almost a proof that for any measure of probability P, 
P(XY%E)=P(X%E)P(Y%XE). For if one sets G(x)=x, this rule is immediate. And, as Cox points 
out, if P(X%E) measures probability, then so does G[P(X%E)] -- at least, according to the two 
axioms given above. The constant C may be understood by setting X=Y and recalling that 
XX=X according to the axioms of Boolean algebra. It follows by simple algebra that C = 
G[P(X%XE)] -- i.e., C is the probability of X on the evidence X, the numerical value of 
certainty. Typically, in probability theory, C=1. But this is a convention, not a logical 
requirement.  

    As for negation, Cox has shown that if P(X)=f[P(-X)], Boolean algebra leads to the formula 
Xr+[f(X)]r=1. Given this, we could leave r unspecified and use P(X)r as the symbol of 
probability; but, following Cox, let us take r=1.  

    Cox's analysis tells us in exactly what sense the laws of probability theory are arbitrary. All 
the laws of probability theory can be derived from the rules P(X%E)=1-P(-X%E), 
P(XY%E)=P(X%E)P(Y%XE). And these rules areessentially the only ways of dealing with 
negation and conjunction that Boolean algebra allows. So, if we accept Boolean algebra and 
Cox's two axioms, we accept probability theory.  

    Finally, for a more concrete perspective on these issues, let us turn to the work of Krebs, 
Kacelnik and Taylor (1978). These biologists studied the behavior of birds (great tits) placed in 
an aviary containing two machines, each consisting of a perch and a food dispenser. One of the 
machines dispenses food p% of the times that its perch is landed on, and the other one dispenses 
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food q% of the times that its perch is landed on. They observed that the birds generally visit the 
two machines according to the optimal strategy dictated by Bayes' rule and Laplace's Principle of 
Indifference -- a strategy which is not particularly obvious. This is a strong rebuttal to those who 
raise philosophical objections against the psychological use of probability theory. After all, if a 
bird's brain can use Bayesian statistics, why not a human brain?  

BAYES' RULE  

    Assume that one knows that one  of the propositions Y1,Y2,...,Yn is true, and that only one of 
these propositions can possibly be true. In mathematical language, this means that the collection 
{Y1,...,Yn) is exhaustive and mutually exclusive. Then, Bayes' rule says that  

P(Yn)P(X%Yn)  

        P(Yn%X) = %%%%%%%%%%%%%%%%  

P(Y1)P(X%Y1)+...+P(Yn)P(X%Yn)  

In itself this rule is unproblematic; it is a simple consequence of the two rules of probable 
inference derived in the previous section. But it lends itself to controversial applications.  

    For instance, suppose Y1 is the event that a certain star system harbors intelligent life which is 
fundamentally dissimilar from us, Y2 is the event that it harbors intelligent life which is 
fundamentally similar to us, and Y3 is the event that it harbors no intelligent life at all. Assume 
these events have somehow been precisely defined. Suppose that X is a certain sequence of radio 
waves which we have received from that star system, and that one wants to compute P(Y2%X): 
the probability, based on the message X, that the system has intelligent life which is 
fundamentally similar to us. Then Bayes' rule applies: {Y1,Y2,Y3} is exhaustive and mutually 
exclusive. Suppose that we have a good estimate of P(X%Y1), P(X%Y2), and P(X%Y3): the 
probability that an intelligence dissimilar to us would send out message X, the probability that an 
intelligence similar to us would send out message X, and the probability that an unintelligent star 
system would somehow emit message X. But how do we know P(Y1), P(Y2) and P(Y3)?  

    We cannot deduce these probabilities directly from the nature of messages received from star 
systems. So where does P(Yi%X) come from? This problem,at least in theory, makes the 
business of identifying extraterrestrial life extremely tricky. One might argue that it makes it 
impossible, because the only things we know about stars are derived from electromagnetic 
"messages" of one kind or another -- light waves, radio waves, etc. But it seems reasonable to 
assume that spectroscopic information, thermodynamic knowledge and so forth are separate from 
the kind of message-interpretation we are talking about. In this case there might be some kind of 
a priori physicochemical estimate of the probability of intelligent life, similar intelligent life, and 
so forth. Carl Sagan, among others, has attempted to estimate such probabilities. The point is that 
we need some kind of prior estimate for the P(Yi), or Bayes' rule is useless here.  

    This example is not atypical. In general, suppose that X is an effect, and {Yi} is the set of 
possible causes. Then to estimate P(Y1%X) is to estimate the probability that Y1, and none of the 
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other Yi, is the true cause of X. But in order to estimate this using Bayes' rule, it is not enough to 
know how likely X is to follow from Yi, for each i. One needs to know the probabilities P(Yi) -- 
one needs to know how likely each possible cause is, in general.  

    One might suppose these problems to be a shortcoming of Bayes' rule, of probability theory. 
But this is where Cox's demonstration proves invaluable. Any set of rules for uncertain reasoning 
which satisfy his two simple, self-evident axioms -- must necessarily lead to Bayes' rule, or 
something essentially equivalent with a few G's and r's floating around. Any reasonable set of 
rules for uncertain reasoning must be essentially identical to probability theory, and must 
therefore have no other method of deducing causes from effects than Bayes' rule.  

    The perceptive reader might, at this point, accuse me of inconsistency. After all, it was 
observed above that quantum events may be interpreted to obey a different sort of logic. And in 
Chapter 8 I raised the possibility that the mind employs a weaker "paraconsistent" logic rather 
than Boolean logic. How then can I simply assume that Boolean algebra is applicable?  

    However, the inconsistency is only apparent. Quantum logic and paraconsistent logic are both 
weaker than Boolean logic, and they therefore cannot not lead to any formulas which are not also 
formulas of Boolean logic: they cannot improve on Bayes' rule.  

    So how do we assign prior probabilities, in practice? It is not enough to say that it comes 
down to instinct, to biological programming. It is possible to say something about how this 
programming works.  

THE PRINCIPLE OF INDIFFERENCE  

    Laplace's "Principle of Indifference" states that if a question is known to have exactly n 
possible answers, and these answers are mutually exclusive, then in the absence of any other 
knowledge one should assume each of these answers to have probability 1/n of being correct.  

    For instance, suppose you were told that on the planet Uxmylarqg, thepredominant intelligent 
life form is either blue, green, or orange. Then, according to the Principle of Indifference, if this 
were the only thing you knew about Uxmylargq, you would assign a probability of 1/3 to the 
statement that it is blue, a probability of 1/3 to the statement that it is green, and a probability of 
1/3 to the statement that it is orange. In general, according to the Principle of Indifference, if one 
had no specific knowledge about the n causes {Y1,...,Yn} which appear in the above formulation 
of Bayes' rule, one would assign a probability P(Yi)=1/n to each of them.  

    Cox himself appears to oppose the Principle of Indifference, arguing that "the knowledge of a 
probability, though it is knowledge of a particular and limited kind, is still knowledge, and it 
would be surprising if it could be derived from... complete ignorance, asserting nothing". And in 
general, that is exactly what the Principle of Indifference does: supplies knowledge from 
ignorance. In certain specific cases, it may be proved to be mathematically correct. But, as a 
general rule of uncertain inference, it is nothing more or less than a way of getting something out 
of nothing. Unlike Cox, however, I do not find this surprising or undesirable, but rather exactly 
what the situation calls for.  
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9.2 The Maximum Entropy Principle  

    If the Principle of Indifference tells us what probabilities to assign given no background 
knowledge, what is the corresponding principle for the case when one does have some 
background knowledge? Seeking to answer this question, E.T. Jaynes studied the writings of J. 
Willard Gibbs and drew therefrom a rule called the maximum entropy principle. Like the 
Principle of Indifference, the maximum entropy principle is provably correct in certain special 
cases, but in the general case, justifying it or applying it requires ad hoc, something-out-of-
nothing assumptions.  

    The starting point of the maximum entropy principle is the entropy function  

    H(p1,...,pn) = - [p1logp1 + p2logp2 + ... + pnlogpn],  

where {Yi} is an exhaustive, mutually exclusive collection of events and pi=P(Yi). This function 
first emerged in the work of Boltzmann, Gibbs and other founders of thermodynamics, but its 
true significance was not comprehended until Claude Shannon published The Theory of 
Communication (1949). It is a measure of the uncertainty involved in the distribution {pi}.  

    The entropy is always positive. If, say, (p1,...,pn)=(0,0,1,..,0,0,0), then the entropy H(p1,...,pn) is 
zero -- because this sort of distribution has the minimum possible uncertainty. It is known which 
of the Yi is the case, with absolute certainty. On the other hand, if (p1,...,pn)=(1/n,1/n,...,1/n), then 
H(p1,...,pn)=logn, which is the maximum possible value. This represents themaximum possible 
uncertainty: each possibility is equally likely.  

    The maximum entropy principle states that, for any exhaustive, mutually exclusive set of 
events (Y1,...,Yn), the most likely probability distribution (p1,...,pn) with respect to a given set of 
constraints on the Yi is that distribution which, among all those that satisfy the constraints, has 
maximum entropy. The "constraints" represent particular knowledge about the situation in 
question; they are what distinguishes one problem from another.  

    For instance, what if one has absolutely no knowledge about the various possibilities Yi? 
Then, where pi=P(Yi), can we determine the "most likely" distribution (p1,...,pn) by finding the 
distribution that maximizes H(p1,...,pn)? It is easy to see that, given no additional constraints, the 
maximum of H(p1,...,pn) occurs for the distribution (p1,...pn)= (1/n,1/n,...,1/n). In other words, 
when there is no knowledge whatsoever about the Yi, the maximum entropy principle reduces to 
the Principle of Indifference.  

MAXIMUM ENTROPY WITH LINEAR CONSTRAINTS  

    In thermodynamics the Yi represent, roughly speaking, the different possible regions of space 
in which a molecule can be; pi is the probability that a randomly chosen molecule is in region Yi. 
Each vector of probabilities (p1,...,pn) is a certain distribution of molecules amongst regions. The 
question is, what is the most likely way for the molecules to be distributed? One assumes that 
one knows the energy of the distribution, which is of the form E(p1,...,pn)=c1p1+...+cnpn, where 
the {ci} are constants obtained from basic physical theory. That is, one assumes that one knows 
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an equation E(p1,...,pn)=K. Under this assumption, the answer to the question is: the most likely 
(p1,...,pn) is the one which, among all those possibilities that satisfy the equation E(p1,...,pn)=K, 
maximizes the entropy H(p1,...,pn). There are several other methods of obtaining the most likely 
distribution, but this is by far the easiest.  

    What is remarkable is that this is not just an elegant mathematical feature of classical 
thermodynamics. In order to do the maximum entropy principle justice, we should now consider 
its application to quantum density matrices, or radio astronomy, or numerical linear algebra. But 
this would take us too far afield. Instead, let us consider Jaynes's "Brandeis dice problem", a 
puzzle both simple and profound.  

    Consider a six-sided die, each side of which may have any number of spots between 1 and 6. 
The problem is (Jaynes, 1978):  

        suppose [this] die has been tossed N times, and we are told only that the average number of 
spots up was not 3.5, as we might expect from an 'honest' die but 4.5. Given this information, 
and nothing else, what probability should we assign to i spots on the next toss? (p.49)  

Let Yi denote the event that the next toss yields i spots; let pi=P(Yi). The information we have 
may be expressed as an equation of the formA(p1,...,pn)=4.5, where A(p1,...,pn)=(p1+...+pn)/n is 
the average of the pi. This equation says: whatever the most likely distribution of probabilities is, 
it must yield an average of 4.5, which is what we know the average to be.  

    The maximum entropy principle says: given that the average number of spots up is 4.5, the 
most likely distribution (p1,...,pn) is the one that, among all those satisfying the constraint 
A(p1,...,pn)=4.5, maximizes the entropy H(p1,...,pn). This optimization problem is easily solved 
using Lagrange multipliers, and it has the approximate solution (p1,...,pn) = (.05435, .07877, 
.11416, .16545, .23977, .34749). If one had A(p1,...,pn)=3.5, the maximum entropy principle 
would yield the solution (p1,...,pn)=(1/6, 1/6, 1/6, 1/6, 1/6, 1/6); but, as one would expect, 
knowing that the average is 4.5 makes the higher numbers more likely and the lower numbers 
less likely.  

    For the Brandeis dice problem, as in the case of classical thermodynamics, it is possible to 
prove mathematically that the maximum entropy solution is far more likely than any other 
solution. And in both these instances the maximization of entropy appears to be the most 
efficacious method of locating the optimal solution. The two situations are extremely similar: 
both involve essentially random processes (dice tossing, molecular motion), and both involve 
linear constraints (energy, average). Here the maximum entropy principle is at its best.  

MAXIMUM ENTROPY AS A GENERAL RULE OF INFERENCE  

    The maximum entropy principle is most appealing when one is dealing with linear constraints. 
There is a simple, straightforward proof of its correctness. But when talking about the general 
task of intelligence, we are not necessarily restricted to linear constraints. Evans (1978) has 
attempted to surmount this obstacle by showing that, given any constraint F(p1,...,pn)=K, the 
overwhelmingly most likely values pi=P(Yi) may be found by maximizing  
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    H(p1,...,pn) - H(k1,...,kn) = p1log(p1/k1) + ... + pnlog(pn/kn)  

where k=(k1,k2,...,kn) is some "background distribution". The trouble with this approach is that 
the only known way of determining k is through a complicated sequence of calculations 
involving various ensembles of events.  

    Shore and Johnson (1980) have provided an alternate approach, which has been refined 
considerably by Skilling (1989). Extending Cox's proof that probability theory is the only 
reasonable method for uncertain reasoning, Shore and Johnson have proved that if there is any 
reasonably general method for assigning prior probabilities in Bayes' Theorem, it has to depend 
in a certain way upon the entropy. Here we will not require all the mathematical details; the 
general idea will suffice.  

    Where D is a subset of {Yi}, and C is a set of constraints, let f[D%C] denote the probability 
distribution assigned to the domain D on the basis of the constraints C. Let m={m1,m2,...mn} 
denote some set of "background information" probabilities. For instance, if one actually has no 
backgroundinformation, one might want to implement the Principle of Indifference and assume 
mi=1/n, for all i.  

    Assume f[D%C] is intended to give the most likely probability distribution for D, given the 
constraints C. Then one can derive the maximum entropy principle from the following axioms:  

Axiom I: Subset Independence  

    If constraint C1 applies in domain D1 and constraint C2 applies in domain D2, then 
f[D1%C1]%f[D2%C2] = f[D1%D2%C1%C2]. (Basically, this means that if the constraints involved 
do not interrelate D1 and D2, neither should the answer). This implies that f[D%C] can be 
obtained by maximizing over a sum of the form S(p,m)=m1Q(p1)+...+mnQ(pn), where Q is some 
function.  

Axiom II: Coordinate Invariance  

    This is a technical requirement regarding the way that f[(p1,...,pn)%C] relates to 
f[(p1/q1,....,pn/qn)%C]: it states that if one expresses the regions in a different coordinate system, 
the probabilities do not change. It implies that S(p,m)=m1Q(p1/m1)+...+mnQ(pn/mn).  

Axiom III: System Independence  

    Philosophically, this is the crucial requirement. "If a proportion q of a population has a certain 
property, then the proportion of any sub-population having that property should properly be 
assigned as q.... For example, if 1/3 of kangaroos have blue eyes... then [in the absence of 
knowledge to the contrary] the proportion of left-handed kangaroos having blue eyes should be 
1/3"  

It can be shown that these axioms imply that f[Y%C] is proportional to the maximum of the 
entropy H(p1,...,pn) subject to the constraints C, whatever the constraints C may be (linear or 
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not). And since it must be proportional to the entropy, one may as well take it to be equal to the 
entropy.  

    These axioms are reasonable, though nowhere near as compelling as Cox's stunningly simple 
axioms for probable inference. They are not simply mathematical requirements; they have a great 
deal of philosophical substance. What they do not tell you, however, is by what amount the most 
likely solution f[Y%C] is superior to all other solutions. This requires more work.  

    More precisely, one way of summarizing what these axioms show is as follows. Let 
m=(m1,...,mn) be some vector of "background" probabilities. Then f[D%C] must be assigned by 
maximizing the function  

    S(p,m)=[p1-m1-p1log(p1/m1)]+...+[pn-mn-pnlog(pn/mn)].  

    Evans has shown that, for any constraint C, there is some choice of m for which the maximum 
entropy principle gives an distribution which is not only correct but dramatically more likely 
than any other distribution. It is implicit, though not actually stated, in his work that given the 
correct vector (m1,...,mn), the prior probabilities {pi} in Bayes' formula must be given by  

    pi = exp[aS/Z],  

where S= S(p,m) as given above, Z=exp(aS)/[n(p1p2...pn)1/2], and a is aparameter to be discussed 
below. Skilling has pointed out that, in every case for which the results have been calculated for 
any (m1,...,mn), with linear or nonlinear constraints, this same formula has been the result. He 
has given a particularly convincing example involving the Poisson distribution.  

    In sum: the maximum entropy principle appears to be a very reasonable general method for 
estimating the best prior probabilities; and it often seems to be the case that the best prior 
probabilities are considerably better than any other choice. Actually, none of the details of the 
maximum entropy method are essential for our general theory of mentality. What is important is 
that, in the maximum entropy principle, we have a widely valid, practically applicable method 
for estimating the prior probabilities required by Bayes' Theorem, given a certain degree of 
background knowledge. The existence of such a method implies the possibility of a unified 
treatment of Bayesian reasoning.  

DEDUCTION, INDUCTION  

    In order to use Bayes' rule to determine the P(Yi%X), one must know the P(X%Yi), and one 
must know the P(Yi). Determining the P(X%Yi) is, I will propose, a fundamentally deductive 
problem; it is essentially a matter of determining a property of the known quantity Yi. But the 
P(Yi) are a different matter. The maximum entropy principle is remarkable but not magical: it 
cannot manufacture knowledge about the P(Yi) where there isn't any. All it can do is work with 
given constraints C and given background knowledge m, and work these into a coherent overall 
guess at the P(Yi). In general, the background information about these probabilities must be 
determined by induction. In this manner, Bayes' rule employs both inductive and deductive 
reasoning.  
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THE REGULARIZATION PARAMETER  

    It is essential to note that the maximum entropy method is not entirely specified. Assuming the 
formulas given above are accurate, there is still the problem of determining the parameter a. It 
appears that there is no way to assign it a universal value once and for all -- its value must be set 
in a context-specific way. So if the maximum entropy principle is used for perception, the value 
of a must be set differently for different perceptual acts. And, furthermore, it seems to me that 
even if the maximum entropy principle is not a central as I am assuming, the problem of the 
parameter a is still relevant: any other general theory of prior probability estimation would have 
to give rise to a similar dilemma.  

    Gull (1989) has demonstrated that the parameter a may be interpreted as a "regularizing 
parameter". If a is large, prior probabilities are computed in such a way that distributions which 
are far from the background model m are deemedrelatively unlikely. But if a is very small, the 
background model is virtually ignored.  

    So, for instance, if there is no real background knowledge and the background model m is 
obtained by the Principle of Indifference, the size of a determines the tendency of the maximum 
entropy method to assign a high probability to distributions in which all the probabilities are 
about the same. Setting a high would be "over-fitting". But, on the other hand, if m is derived 
from real background knowledge and the signal of which the Yi are possible explanations is very 
"noisy," then a low a will cause the maximum entropy principle to yield an optimal distribution 
with a great deal of random oscillation. This is "under-fitting". In general, one has to keep the 
parameter a small to get any use out of the background information m, but one has to make it 
large to prevent the maximum entropy principle from paying too much attention to chance 
fluctuations of the data.  

BAYESIAN PARAMETER ESTIMATION  

    As an alternative to setting the parameter a by intuition or ad hoc mathematical techniques, 
Gull has given a method of using Bayesian statistics to estimate the most likely value of a for 
particular p and m. Often, as in radioastronomical interferometry, this tactic or simpler versions 
of it appear to work well. But, as Gull has demonstrated, vision processing presents greater 
difficulties. He tried to use the maximum entropy principle to turn blurry pictures of a woman 
into accurate photograph-like images, but he found that the Bayesian derivation of a yielded 
fairly unimpressive results.  

    He devised an ingenious solution. He used the maximum entropy principle to take the results 
of a maximum entropy computation using the value of a arrived at by the Bayesian method -- 
and get a new background distribution m'=(m1',...,mn'). Then he applied the maximum entropy 
principle using this new background knowledge, m'. This yielded beautiful results -- and if it 
hadn't, he could have applied the same method again. This is yet another example of the power 
of hierarchical structures to solve perceptual problems.  



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

120

    Of course, one could do this over and over again -- but one has to stop somewhere. At some 
level, one simply has to set the value of a based on intuition, based on what value a usually has 
for the type of problem one is considering. This is plainly a matter of induction.  

    In general, when designing programs or machines to execute the maximum entropy principle, 
we can set a by trial and error or common sense. But this, of course, means that we are using 
deduction, analogy and induction to set a. I suggest that similar processes are used when the 
mind determines a internally, unconsciously. This hypothesis has some interesting consequences, 
as we shall see.  

    As cautioned above, if the maximum entropy method were proved completely incorrect, it 
would have no effect on the overall model of mind presented here -- so long as it were replaced 
by a reasonably simple formula, or collection of formulas, for helping to compute the priors in 
Bayes' formula; and so long as this formula or collection of formulas was reasonably amenable 
to inductive adjustment. However, I do not foresee the maximum entropy principle being 
"disproved" in any significant sense. There may be indeed be psychological systems which have 
nothing to do with it. But the general idea of filling in the gaps in incomplete data with the "most 
likely" values seems so obvious as to be inevitable. And the idea of using the maximum entropy 
values -- the values which "assume the least", the most unbiased values -- seems almost as 
natural. Furthermore, not only is it conceptually attractive and intuitively attractive -- it has been 
shown repeatedly to work, under various theoretical assumptions and in various practical 
situations.  

9.3 The Logic of Perception  

    Now, let us return to the perceptual hierarchy as briefly discussed in Section 9.0. I propose 
that this hierarchy is composed of a network of processors, each one of which operates 
primarily as follows:  

1. Take in a set of entities consisting of stimuli, patterns in stimuli, patterns in patterns in stimuli, 
etc.  

2. Use Bayes' rule and the maximum entropy principle (or some other tool for determining 
priors) -- perhaps aided by induction, deduction and analogy - to obtain a small set of most likely 
"interpretations" of what its input represents.  

3. Seek to recognize the most meaningfully complex approximate patterns in these 
interpretations. Where %x% is the minimum complexity assigned to x by any processor that 
inputs to processor P, processor P should use % %% as its measure of complexity.  

4. Output these newly recognized patterns, along with perhaps portions of its input.  

    Step 3 is basically a form of Occam's razor: it states that the mind looks for the simplest 
interpretation of the data presented to it.  
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    On lower levels, this pattern recognition will have to be severely limited. Processors will have 
to be restricted to recognizing certain types of patterns -- e.g. lines, or simple shapes -- rather 
than executing the optimizations involved in pattern recognition over a general space of 
functions. This is similar to the situation considered in Chapter 3, when we discussed 
"substitution machines." A substitution machine was a very special kind of pattern, but it turned 
out that much more general types of patterns could be formed from hierarchies of substitution 
machines. Here we have a hierarchy of restricted pattern recognizers, which as a whole is not 
nearly so restricted, because it deals routinely with patterns in patterns, patterns in patterns in 
patterns, and so on.  

    And what about the "aid" provided to Bayes' rule in Step 2? This also will have to be severely 
restricted on the lower levels, where speed is of the essence and access to long-term memory is 
limited. For instance, calculating the P(X%Yi) is a matter of deduction; and on lower levels this 
deduction may be carried out by rigid "hardware" routines, by fixed programs specific to certain 
types of X and Yi. But as the level becomes higher, so does the chance that a processor will refer 
to more general, more intricate deductive systems to compute its P(X%Yi). And, of course, one 
cannot use a general, flexible deductive system without recourse to sophisticated analogical 
reasoning and therefore to a structurally associative memory.  

    Also, as the level becomes higher and higher, the P(Yi) are more and more likely to be 
calculated by sophisticated inductive processing rather than, say, simple entropy maximization. 
Technically speaking, induction may be used to provide a good background knowledge vector 
{m1,...,mn} and meaningful constraints C. On the lower levels, the set of possible interpretations 
Yi is provided by the hardware. But on the higher levels, the Yi may be entirely determined by 
induction: recall that the output of the general induction algorithm is a set of possible worlds . 
Once the level is high enough, no or essentially no entropy maximization may be necessary; the 
prior may be supplied entirely or almost entirely by induction. The regularization parameter a 
may be set very low. On the other hand, intermediate levels may get some  of the Yi from 
induction and some from hardware, and entropy maximization may be invoked to a significant 
degree.  

    Also, the regularization parameter a may be adapted by induction to various degrees on 
various levels. On very low levels, it is probably fixed. Around the level of consciousness, it is 
probably very small, as already mentioned. But on the intermediate levels, it may be adaptively 
modified, perhaps according to some specialized implementation of the adaptation-of-
parameters scheme to be given in the following chapter.  

    In sum: on the lower levels of the perceptual hierarchy, experience does not affect processing. 
The structurally associative memory is not invoked, and neither are any general pattern 
recognition algorithms. Lower level processors apply Bayes' rule, using hardware to set up the 
{Yi} and to deduce the P(X%Yi), and maximum entropy hardware to get the P(Yi). One result of 
this isolation is that prior knowledge has no effect on low-level pattern recognition -- e.g. 
familiar shapes are not necessarily more easily perceived (Kohler, 1947).  

    On higher levels, however, the structurally associative memory must be invoked, to aid with 
the analogical reasoning required for estimating the P(X%Yi) either by induction or according to 



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

122

a flexible deductive system. Also, as will be discussed below, induction is required to set up the 
{Yi} -- which are not, as on lower levels, "wired in." And sophisticated parameter adaptation is 
required to intelligently the regularization parameter a and, possibly, other parameters of the 
process of prior estimation. The structure of the perceptual hierarchy is still important, but it is 
interconnected with the structure of the central processing systems related to induction, 
deduction, analogy and parameteradaptation.  

WHOLE AND PART  

    So far I have only discussed the progression of information upward through the perceptual 
hierarchy. Upward progression builds more complex, comprehensive forms out of simpler, more 
specific ones. But downward progression is equally essential.  

    It was the genius of the Gestalt psychologists to recognize that the understanding of the 
whole guides the perception of the part. This may be reconciled with the present framework by 
assuming that, in many cases, a processor on level n and a processor on level n-1 will refer to 
respectively more and less "local" aspects of the same phenomenon. For instance, a processor on 
level -8 might refer to lines, and a processor on level -7 to shapes composed of lines. In this 
framework, the Gestalt insight means: the results obtained by processors on level n of the 
perceptual hierarchy are used to tell processors on level n-1 what to look for. Specifically, I 
suggest that they are used to give the processors on level n-1 some idea of what the set {Yi} 
should be, and what the P(X%Yi) are.  

    In Gesalt Psychology, Wolfgang Kohler (1947, p.99) gave several classic examples of this 
kind of top-down information transmission. For instance, if someone is shown Figure 8a and 
asked to draw it from memory , they will correctly draw the point P on the center of the segment 
on which it lies. But if someone is shown Figure 8b and asked to draw it from memory, they will 
place P to the right of the center. And, on the other hand, if they are shown Figure 8c and asked 
to draw it from memory, they will usually place it to the left of the center. Hundreds of 
experiments point to the conclusion that this sort of thing is not a quirk of memory but rather a 
property of perception -- we actually see dots in different places based on their surroundings.  

    This is only the most rudimentary example. It has been conclusively demonstrated (Rock, 
1983) that a stationary object appears to move if it is surrounded by a moving object, that a 
vertical line appears tilted if it is seen within a room or rectangle that is tilted, that the perceived 
speed of a moving object is a function of the size of the aperture through which it is perceived, et 
cetera. And Figure 9 (Rock, 1983) is an example of a picture which at first looks like a 
meaningless arrangement of fragments, but actually looks entirely different once recognized.  

    All these examples illustrate that the operation of a processor at level n can be affected by the 
conclusions of a processor at level n+1. Each one of these particular cases is undoubtedly highly 
complex. For the purpose of illustration, however, let us take a drastically oversimplified 
example. Say the processor which perceives points and lines is on level -8. Then perhaps the 
processor which put points and lines together into shapes is on level -7. According to this setup, 
Kohler's simple example illustrates that the operation of level -8 isaffected by the results of a 
level -7 computation. Roughly speaking, the processor on level -7 takes in a bunch of points and 
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lines and guesses the "most likely shape" formed out of them. It then gives the processor on level 
-8 a certain probability distribution {mi}, which indicates in this case that the point is more likely 
to be to the right of the center of the line.  

COGNITION OR SPONTANEOUS INTERACTION?  

    Above I said that on lower levels, a great deal of perceptual processing is executed by 
"hardware", by biological programs that may have little to do with deduction, induction, analogy 
or probability theory. But it is very difficult to estimate exactly how much this "great deal" is -- 
and this difficulty has nothing to do with the specifics of the present model. There is little 
consensus in biology or psychology as to how much of the processing involved in perception is 
"thoughtlike" as opposed to "hardware-like". In fact, there is little consensus as to what 
"thoughtlike" means.  

    In the past, there have essentially been two camps. The Gestalt psychologists believed that, in 
the words of Irwin Rock,  

        the determinant of a perception is not the stimulus but spontaneous interactions between the 
representations of several stimuli or interactions between the stimulus and more central 
representations. Such interaction could take any form consistent with the known principles of 
neurophysiology. The essence of this theory is that... complex interactive events that ensue 
following stimulation... can allow for known effects such as those of context, constancy, 
contrast, perceptual changes without stimulus changes, illusions, and the like. (p.32)  

Rock opposes this "spontaneous interaction theory" to the "cognitive theory", in which 
"reference is made... to thoughtlike processes such as description, rule following, inference or 
problem solving."  

    The theory given here is plainly cognitive in nature. However, it leaves a great deal of room 
for "spontaneous interaction." First of all, as mentioned above, the theory assigns a significant 
role to "hardware", which in the case of the human brain is likely to be independently operating 
self-organizing neural circuitry. How great or how small the role of this independently operating 
circuitry is, we cannot yet say.  

    In any event, the entire debate may be a matter of semantics. I have made no restrictions on 
the nature of the physical systems underlying minds, except that they must behave similarly to 
the way they would if they followed the algorithms given. It is certainly not unlikely that the 
brain "spontaneously" self-organizes in such a way as to execute processes of cognition. As 
observed in Chapter 1, some  structure must be involved; an unstructured neural network will 
virtually never demonstrate intelligent behavior. The self-organizing neurodynamics in which the 
Gestaltists placed so much faith may indeed play adominant role.  

    So, this is a cognitive theory, but it does not rule out the existence of noncognitive processes 
underlying or supplementing cognition.  
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    For instance, consider Figure 9 above. The framework I have given provides a rather cognitive 
analysis of this phenomenon. Suppose that, say, the part of the vision processing module that 
resides on level -3 contains a "shape interrelation" or "form organization" processor. Assume that 
this processor works by recognizing patterns  in the input provided to it by level -4 processors, 
such as "shape detection processors". Then, once it has recognized the pattern "horse and rider", 
which greatly simplifies the picture, things change significantly. First of all, if the memory stores 
the picture it will most likely store it as a specific instantiation of the pattern "horse and rider", 
very differently from the way it would store it if no such prominent pattern had been recognized. 
And, more to the point, the level -3 processor will adjust the {Yi} used by a level -4 shape 
recognition processor in a very specific way: it will tell it to look for shapes that look like legs, 
tails, feet, et cetera. And, perhaps more significantly, it will adjust the P(Yi), too -- it will tell the 
shape recognition processor that a shape is more likely if it looks like some part of a horse.  

    It is possible that these changes will propagate further down. For instance, suppose that the 
level -4 shape recognition processor receives output from a level -5 curve recognition processor. 
What if the new shapes on which the shape recognition processor has been instructed to 
concentrate all have some common factor, say a gentle sloping organic nature rather than an 
angular nature or a spiraling nature? Then the shape recognition processor might well instruct the 
curve recognition processor to look for the appropriate curves -- i.e. it might supply the curve 
recognition processor with new Yi, or with new P(Yi).  

    Again, this analysis is highly oversimplified, but it indicates the general direction that a 
detailed analysis might take. It is cognitive in that it implies that reasoning is indeed occurring 
below the conscious level. But does how the shape recognition, or the form organization 
recognition, or the curve recognition take place? I have little doubt that these pattern recognition 
problems are solved by specific self-organizing networks of neural clusters. In this sense, 
"spontaneous interaction" undoubtedly plays an essential role. Neural networks seem to be very 
good at self-organizing themselves so as to obtain the solutions to pattern-recognition problems. 
But I think that certain very general cognitive structures are also necessary, in order to 
systematically direct these solutions toward the goal of intelligent behavior.  

MULTILEVEL OPTIMIZATION IN THE PERCEPTUAL HIERARCHY  

    I have suggested that information can progress downward through the perceptual hierarchy, 
but I have not yet said exactly how this information transmission is organized. The most natural 
strategy for this purpose is multilevel optimization.  

    This is especially plain when, as in vision processing, lower and lower levels refer to more and 
more local aspects of the same phenomenon. In cases such as this, operations on lower levels 
roughly correspond to searches in smaller subsets of the space of all patterns in the phenomenon 
in question, so that the regulation of the perceptual hierarchy appears very much like the 
regulation of a search, as discussed in Chapter 2.  

    In general, what the multilevel philosophy dictates is that, after a processor on level n makes 
its best guess as to the k most likely probability distributions pi=(p1i,...,pni), it sends down 
messages to L>k processors on level n-1. To each of these processors it "assigns" one of the pi -- 
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the most likely distribution gets more processors than the second most likely, and so on. The 
proportion of processors to be assigned each distribution could be set approximately equal to 
S(pi,m)/[S(p1,m)+...+S(pk,m)], in the notation of the previous chapter.  

    To the processors it has assigned pi, it sends a new background distribution mi, based on the 
assumption that pi is actually the case. Also, it may send the processor new possibilities Yi, 
based on this assumption. These are not trivial tasks: determining a new mi and determining new 
possibilities Yi both require deductive reasoning, and hence indirectly analogy and associative 
memory.  

    The parameter k need not be constant from level to level, but in the case of visual perception, 
for instance, it seems plausible that it is approximately constant. Obviously, this requires that the 
number of processors increases exponentially as the level decreases. But if the individual 
processors on lower levels deal with progressively simpler tasks, this is not unreasonable.  

    The perceptual hierarchy may thus be understood to operate by interconnecting multilevel 
optimization, Bayes' rule and the maximum entropy principle -- and on the higher levels 
integrating induction and analogy-driven deduction as well.  

SIMPLICITY AND PERCEPTION  

     Finally, let us consider the Gestaltists' basic law of visual perception: Any stimulus pattern 
tends to be seen in such a way that the resulting structure is as simple as the given 
conditions permit. This rule was formulated to explain the results of numerous well-known 
experiments involving, for instance, drawings with multiple interpretations. As mentioned above, 
it has been shown that the interpretation which one places on a drawing can affect the way one 
actually sees the drawing.  

    The key shortcoming of this Gestaltist principle is, in my opinion, the vagueness of the word 
"simplicity." Some Gestaltists have implied that there is a biologically innate measure of 
simplicity. However, experiments indicate that perception of visual stimuli is definitely 
influenced by culture (Segal et al, 1966). This provides a particularly strong argument for the 
need for a precise definition of simplicity: it shows that simplicity is not a universal intuition, but 
is to some extent learned.  

    Shortly after the discovery of information theory, Hochberg and McAlister (1953) attempted 
to use it to make Gestalt theory precise. They proposed that "other things being equal, the 
probabilities of occurrence of alternative perceptual responses to a given stimulus (i.e. their 
'goodness') are inversely proportional to the amount of information required to define such 
alternatives differentially; i.e., the less the amount of information needed to define a given 
organization as compared to the other alternatives, the more likely that figure will be so 
perceived."  

    They defined "goodness" as "the response frequency or relative span of time ... devoted to 
each of the possible perceptual responses which may be elicited by the same stimulus." And they 
defined information as "the number of different items we must be given, in order to specify or 
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reproduce a given pattern or 'figure', along some one or more dimensions which may be 
abstracted from that pattern, such as the number of different angles, number of different line 
segments of unequal length, etc." Wisely, they did not blindly equate intuitive "information" with 
information in the communication-theoretic sense. However, their definition is not really much 
more precise than the standard Gestalt doctrine.  

    What if we replace "amount of information needed to define" in Hochberg's hypothesis with 
"complexity of defining relative to the patterns already in the mind," in the sense defined in 
Chapter 4? This seems to me to capture what Hochberg and McAlister had in mind. The "number 
of different items" in a set is a crude estimate of the effort it takes the mind to deal with the set, 
which is (according to the present model of mind) closely related to the algorithmic complexity 
of the set relative to the contents of the mind. To get a better estimate one must consider not only 
the raw quantity of items but also the possibility that a number of items which are all minor 
variations on one basic form might be "simpler" to the mind than a smaller number of more 
various items. And this line of thought leads directly to the analysis of pattern and complexity 
proposed in Chapter 4.  

    Next, what if we associate these "alternative perceptual responses" with complementary 
patterns in the set of stimuli presented, in the sense given in Chapter 4? Then we have a pattern-
theoretic formulation of the Gestalt theory of perception: Among a number of complementary 
patterns in a given stimulus, a perceiving mind will adopt the one with the least complexity 
relative to its knowledge base. Note that this refers not only to visual stimuli, but to perception 
in general. It is easy to see that this principle, obtained as a modification of standard Gestalt 
theory, is a consequence of the model of perception given above. Given a set of stimuli, Bayes' 
rule picks the most likely underlying form. But it needs some sort of prior assumption, and on 
the higher levels of the perceptual hierarchy this is supplied by a network of processes involving 
analogy, and therefore long-term memory. Thus, to a certain extent, what we deem most likely is 
based on what we know.  

    To a large extent, therefore, we see what we know. This does not imply that the patterns we 
perceive aren't "there" -- but only that, among the immensevariety of patterns in the universe, we 
automatically tend to see those which are more closely related to what we've seen or thought 
before.  

    This has an interesting consequence for our analysis of induction. Above, we postulated that 
the universe possesses a "tendency to take habits," arguing that otherwise induction could not 
possibly work. But induction is only the process of recognizing patterns in what one perceives, 
and assuming they will continue. Therefore, if we assume that  

1) as the Gestaltist rule suggests, when given a "choice" we tend to perceive what is most closely 
related to our knowledge base;  

2) the set of "external" patterns simple enough to be contained in our minds are presented in a 
fairly "unbiased" distribution (e.g. a distribution fairly close to uniform, or fairly close the 
distribution given in which probability of occurrence is proportional to intensity, etc.);  
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then it follows that the universe as we perceive it must possess the tendency to take habits. Of 
course, this line of thought is circular, because our argument for the general Gestalt rule involved 
the nature of our model of mind, and our model of mind is based on the usefulness of pattern-
recognitive induction, which is conditional on the tendency to take habits. But all this does serve 
to indicate that perception is not merely a technical issue; it is intricately bound up with the 
nature of mind, intelligence, and the external world.  

 

10      

Motor Learning  

10.0 Generating Motions   

    Twenty years ago, Marr (1969) and Albus (1971) suggested that the circuitry of the 
cerebellum resembles the learning machine known as the "perceptron." A perceptron learns how 
to assign an appropriate output to each input by obeying the suggestions of its "teacher". The 
teacher provides encouragement when the perceptron is successful, and discouragement 
otherwise. Marr and Albus proposed that the climbing fibers in the cerebellum play the role of 
the teacher, and the mossy fibers play the role of the input to which the perceptron is supposed to 
assign output.  

    Perceptrons are no longer in vogue. However, the general view of the cerebellum as a learning 
machine has received a significant amount of experimental support. For instance, Ito (1984) has 
studied the way the brain learns the vestibulo-ocular reflex -- the reflex which keeps the gaze of 
the eye at a fixed point, regardless of head movement. This reflex relies on a highly detailed 
program, but it is also situation-dependent in certain respects; and it is now clear that the 
cerebellum can change the gain of the vestibulo-ocular reflex in an adaptive way.  

    The cerebellum, in itself, is not capable of coordinating complex movements. However, Fabre 
and Buser (1980) have suggested that similar learning takes place in the motor cortex -- the part 
of the cortex that is directly connected to the cerebellum. In order to learn a complex movement, 
one must do more than just change a few numerical values in a previous motion (e.g. the gain of 
a reflex arc, the speed of a muscle movement). Sakamoto, Porter and Asanuma (1987) have 
obtained experimental evidence that the sensory cortex of a cat can "teach" its motor cortex how 
to retrieve food from a moving beaker.  

    Asanuma (1989) has proposed that "aggregates of neurons constitute the basic modules of 
motor function", an hypothesis which is in agreement with Edelman's theory of Neural 
Darwinism. He goes on to observe that "each module has multiple loop circuits with many other 
modules located in various areas of the brain" -- a situation illustrated roughly by Figure 10. In 
this view, the motor cortex is a network of "schemes" or "programs", each one interacting with 
many others; and the most interesting question is: how is this network structured?  

10.1 Parameter Adaptation  
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    Consider an algorithm y=A(f,x) which takes in a guess x at the solution to a certain problem f 
and outputs a (hopefully better) guess y at the solution. Assume that it is easy to compute and 
compare the quality Q(x) of guess x and the quality Q(y) of guess y. Assume also that A contains 
some parameter p (which may be a numerical value, a vector of numerical values, etc.), so that 
we may write y=A(f,x,p). Then, for a given set S of problems f whose solutions all lie in some 
set R, there may be some value p which maximizes the average over all f in S of the average 
over all x in R of Q(A(f,x,p)) - Q(x). Such a value of p will be called optimal for S.  

    The determination of the optimal value of p for a given S can be a formidable optimization 
problem, even in the case where S has only one element. In practice, since one rarely possesses a 
priori information as to the performance of an algorithm under different parameter values, one is 
required to assess the performance of an algorithm with respect to different parameter values in a 
real-time fashion, as the algorithm operates. For instance, a common technique in numerical 
analysis is to try p=a for (say) fifty passes of A, then p=b for fifty passes of A, and then adopt the 
value that seems to be more effective on a semi-permanent basis. Our goal here is a more general 
approach.  

    Assume that A has been applied to various members of S from various guesses x, with various 
values of p. Let U denote the nx2 matrix whose i'th row is (fi,xi), and let P denote the nx1 vector 
whose i'th entry is (pi), where fi, xi and pi are the values of f, x and p to which the i'th pass of A 
was applied. Let I denote the nx1 vector whose i'th entry is Q(A(fi,xi,pi))-Q(xi). The crux of 
adaptation is finding a connection between parameter values and performance; in terms of these 
matrices this implies that what one seeks is a function C(X,Y) such that %C(U,P)-I% is small, 
for some norm % %.  

    So: once one has by some means determined C which thus relates U and I, then what? The 
overall object of the adaptation (and of A itself) is to maximize the size of I (specifically, the 
most relevant measure of size would seem to be the l1 norm, according to which the norm of a 
vector is the sum of the absolute values of its entries). Thus one seeks to maximize the function 
C(X,Y) with respect to Y.  

PARAMETER ADAPTATION AS A BANDIT PROBLEM   

    The problem here is that one must balance three tasks: experimenting with p so as to locate an 
accurate C, experimenting with P so as to locate a maximum of C with respect to Y, and at each 
stage implementing the what seems on the basis of current knowledge most appropriate p, so as 
to get the best answer out of A. This sort of predicament, in which one must balance 
experimentalvariation with use of the best results found through past experimentation, is known 
as a "bandit problem" (Gittins, 1989). The reason for the name is the following question: given a 
"two-armed bandit", a slot machine with two handles such that pulling each handle gives a 
possibly different payoff, according to what strategy should one distribute pulls among the two 
handles? If after a hundred pulls, the first handle seems to pay off twice as well, how much more 
should one pull the second handle just in case this observation is a fluke?  

    To be more precise, the bandit problem associated with adaptation of parameters is as follows. 
In practice, one would seek to optimize C(X,Y) with respect to Y by varying Y about the current 



THE STRUCTURE OF INTELLIGENCE  
 

Get any book for free on:   www.Abika.com 

129

optimal value according to some probability distribution. The problem is: what probability 
distribution? One could, of course, seek to determine this adaptively, but this leads to a regress: 
how does one solve the bandit problem associated with this adaptation?  

10.2 The Motor Control Hierarchy  

    I propose a motor control hierarchy which is closely analogous to the perceptual hierarchy, but 
works in the opposite direction. In the motor control hierarchy, the lower levels deal directly 
with muscle movements, with bodily functions; whereas the higher levels deal with patterns in 
bodily movements, with schemes for arranging bodily movements. This much is similar to the 
perceptual hierarchy. But in the motor control hierarchy, the primary function of a processor on 
level n is to instruct processors on level n-1 as to what they should do next. The most crucial 
information transmission is top-down. Bottom-up information transmission is highly simplistic: 
it is of the form "I can do what you told me to do with estimated effectiveness E".  

    Let us be more precise. When we say a processor on the n'th level tells a processor on the n-
1'th level what to do, we mean it gives it a certain goal and tells it to fulfill it. That is, we mean: 
it poses it a certain optimization problem. It tells it: do something which produces a result as 
near to this goal as possible. The processor on the n-1'th level must then implement some 
scheme  for solving this problem, for approximating the desired goal. And its scheme will, in 
general, involve giving instructions to certain n-2'nd level processors. The important point is that 
each level need know nothing about the operation of processors 2 or 3 levels down from it. Each 
processor supplies its subordinates with ends, and the subordinates must conceive their own 
means.     As with the perceptual hierarchy, consciousness plays a role only on certain relatively 
high levels. So, from the point of view of consciousness, the motor control hierarchy has no 
definite end. But, from the point of view of external reality, there is an indisputable bottom level: 
physical actions. The lowest level of the motor control hierarchy therefore has no subordinates 
except for physical, nonintelligent systems. It must therefore prescribe means, not merely ends.  

    Now, where do these "schemes" for optimization come from? Some are certainly 
preprogrammed -- e.g. a human infant appears to have an inborn"sucking reflex". But -- as 
observed above -- even a cursory examination of motor development indicates that a great deal 
of learning is involved.  

    Let us assume that each processor is not entirely free to compute any function within its 
capacity; that it has some sort of general "algorithm scheme", which may be made more precise 
by the specification of certain "parameter values". Then there is first of all the problem of 
parameter adaptation: given an optimization problem and a method of solution which contains a 
number of parameter values, which parameter values are best? In order to approximately solve 
this problem according to the scheme given above, all that is required is an estimate of how 
"effective" each parameter value tends to be. In the motor control hierarchy, a processor on level 
n must obtain this estimate from the processors on level n-1 which it has instructed. The 
subordinate processors must tell their controlling processor how well they have achieved their 
goal. The effectiveness with which they have achieved their goal is a rough indication of how 
effective the parameter values involved are for that particular problem.  
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    So, on every level but the lowest, each processor in the hierarchy tells certain subordinate 
lower-level processors what to do. If they can do it well, they do it and are not modified. But if 
then cannot do their assigned tasks well, they are experimentally modified until they can do a 
satisfactory job. The only loose end here is the nature of this experimental modification. 
Parameter adaptation is only part of the story.       

MOTOR CONTROL AND ASSOCIATIVE MEMORY  

    Knowing how effective each vector of parameter values is for each particular problem is 
useful, but not adequate for general motor control. After all, what happens when some new 
action is required, some action for which optimal parameter values have not already been 
estimated? It would be highly inefficient to begin the parameter optimization algorithm from 
some random set of values. Rather, some sort of educated guess is in order. This means 
something very similar to analogical reasoning is required. Presented with a new task, a motor 
control processor must ask: what parameter values have worked for similar tasks?  

    So, each motor control processor must first of all have access to the structurally associative 
memory, from which it can obtain information as to which tasks are similar to which tasks. And 
it must also have access to a memory bank storing estimates of optimal parameter values for 
given tasks. In this way it can select appropriate schemes for regulating action.  

    Based on the biological facts reviewed above, it is clear that this aspect of motor control is 
native to the motor cortex rather than the cerebellum. To learn a complex action, the brain must 
invoke the greater plasticity of the cortex.  

LEARNING TO THROW  

    Introspectively speaking, all this is little more than common sense. To figure out how to throw 
a certain object, we start out with the motions familiar to us from throwing similar objects. Then, 
partly consciously but mainly unconsciously, we modify the "parameters" of the motions: we 
change the speed of our hand or the angle at which the object is tilted. Based on trial-and-error 
experimentation with various parameters, guided by intuition, we arrive at an optimal, or at least 
adequate, set of motions.  

    This process may be simple or sophisticated. For instance, when first throwing a frisbee with a 
hole in the middle, one throws it as if it were an ordinary frisbee; but then one learns the subtle 
differences. In this case the major problem is fine-tuning the parameters. But when learning to 
throw a shot-put, or a football, the only useful item to be obtained from memory is the general 
scheme of "throwing" -- all the rest must be determined by conscious thought or, primarily, 
experiment.  

    And when learning to juggle, or when learning to throw for the first time, the mind must 
synthesize whole new patterns of timing and coordination: there is not even any "scheme" which 
can be applied. Fragments of known programs must be pieced together and augmented to form a 
new program, which then must be fine-tuned.  
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    More and more difficult tasks require higher and higher levels of the motor control hierarchy -
- both for learning and for execution. Even the very low levels of the motor control hierarchy are 
often connected to the perceptual hierarchy; but the higher levels involve a great deal of 
interaction with yet other parts of the mind.  

10.3 A Neural-Darwinist Perceptual-Motor Hierarchy  

      

    In Chapter 6 we used Edelman's theory of Neural Darwinism to explore the nature of neural 
analogy. However, we did not suggest how the "lower-to-intermediate-level" details discussed 
there might fit into a theory of higher-level brain function. It is possible to give a partial Neural-
Darwinist analysis of the perceptual and motor hierarchies. This entails wandering rather far 
from the biological data; however, given the current state of neuroscience, there is little choice.  

    Assume that the inputs of certain neural clusters are connected to sensory input, and that the 
outputs of certain clusters are connected to motor controls. The purpose of the brain is to give 
"appropriate" instructions to the motor controls, and the determination of appropriateness at any 
given time is in large part dependent upon the effects of past instructions to the motor controls -- 
i.e. on using sensory input to recognize patterns  between motor control instructions and 
desirability of ensuing situation.  

    In order to make sense of this picture, we must specify exactly howappropriateness is to be 
determined. Toward this end I will delineate a hierarchy of maps. Maps which are connected to 
both sensory inputs and motor controls (as well as, naturally, other clusters) we shall call level 1 
maps. These maps are potentially able to "sense" the effect of motor control instructions, and 
formulate future motor control instructions accordingly.  

    One question immediately arises: How are appropriate level 1 maps arrived at and then 
maintained? In the simple Hebb rule discussed in Chapter 6, we have a mechanism by which any 
map, once repeatedly used, will be reinforced and hence maintained; but this says nothing about 
the problem of arriving at an appropriate map in the first place. Rather than proposing a specific 
formula, let us dodge the issue by asserting that the appropriateness of level 1 maps should be 
determined on the basis of the degree to which the levels of certain chemical substances in their 
vicinity are maintained within biologically specified "appropriate" bounds. This cowardly 
recourse to biological detail can serve as the "ground floor" of an interesting general definition of 
appropriateness.  

    Define a map which is not a level-1 map to be appropriate to the extent that the maps or motor 
controls to which it outputs are appropriate. The idea is that a map is appropriate to the extent 
that the entities over which it has (partial) control are appropriate. The appropriateness of a level 
1 map is partially determined by the extent to which it directs motor controls to make appropriate 
actions. And in the long run -- barring statistical fluctuations -- this is roughly equivalent to the 
extent to which it represents an emergent pattern between 1) results of motor control and 2) 
appropriateness as measured by sensory data and otherwise. This is the crucial observation. In 
general, the appropriateness of a map is determined by the extent to which it directs other maps 
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to effect appropriate actions, either directly on motor controls or on other maps. And, barring 
statistical fluctuations, it is plain that this is roughly equivalent to the extent to which it 
represents an emergent pattern between 1) results of outputs to other maps and 2) inputs it 
obtains from various sources.  

    It is important to remember that we are not hypothesizing the brain to contain distinct "pattern 
recognition processors" or "analogical reasoning processors" or "memory cells": our model of 
mind is schematic and logical, not necessarily physical; it is a model of patterns and processes. 
We have hypothesized a neural mechanism which tends to act much like a pattern recognition 
processor, and that is all that can reasonably be expected.  

    Now, let us go beyond the level 1 maps. Define a degree 2 map as a map which outputs to 
level 1 maps (as well as possibly inputting from level 1 maps and other maps and outputting to 
other maps). Define a degree 3 map as one which outputs to degree 2 maps (as well as possibly 
level 1 maps, etc.). One may define maps of degree 4, 5, 6,.. in a similar way. The level of a map 
is then defined as the highest degree to which it possesses. If a level k map accepted inputs only 
from maps of level k-1 or lower, the network of maps would have a strictly hierarchical 
structure. There would be a "top" level n, and our definition of appropriateness would define 
appropriateness on all levels less than n in terms of top-level appropriateness, but say nothing 
about theappropriateness of a map on level n. But in fact, the maps of the brain are arranged in a 
far less orderly fashion. Although there is a bottom level -- the level of perception and action -- 
there is no distinct top level.  

    The nonhierarchical interconnection of the maps of the brain implies that the evaluation of 
appropriateness is a very tricky matter. If A and B both input and output to each other, then the 
appropriateness of A is determined in part as an increasing function of the appropriateness of B, 
and vice versa. The hierarchy of maps does bottom out at level 1, but it also re-enters itself 
multiply. In a very rough way, this explains a lot about human behavior: our internal definition 
of "appropriateness" is determined not only by low-level biological factors but also by a subtle, 
probably unstable dynamical system of circularly reinforcing and inhibiting patterns.  

    We have not yet specified what exactly happens to inappropriate maps. Clearly, an 
inappropriate map should be dissolved, so that it will no longer direct behavior, and so that a new 
and hopefully better map can take its place. The easiest way to effect this would be to inhibit the 
connections between clusters of the map -- to decrease their conductances (roughly speaking, 
proportionally to the lack of appropriateness). Naturally, if a connection belonged to more than 
one map, this decrease would be mitigated by the increase afforded by membership in other 
maps, but this effect need not rob inhibition of its effectiveness.  

    Biologically, how might such a system of inhibition work? It is known that if a once-
frequently-used connection between clusters is unused for a time, its conductance will gradually 
revert to the level of other infrequently-used neurons. Naturally, the presence of inhibitory 
connections between individual neurons plays a role in this. However, it is not presently known 
whether this effect is sufficient for the suppression of inappropriate maps.  
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    At this point, just as we are beginning to move toward the higher levels of mental process, we 
must abandon our discussion of the brain. We have already left our starting point, Neural 
Darwinism, too far behind. On the positive side, we have constructed a hierarchy of neural maps 
which is, intuitively, a combination of the perceptual and motor control hierarchies: it recognizes 
patterns and it controls actions, using a simple form of analogy, in an interconnected way. 
However, we have accounted for only a few of the simpler aspects of the master network to be 
described in Chapter 12 -- we have spoken only of pattern recognition and a simple form of 
structural analogy. We have said nothing of induction, deduction, Bayesian inference, or 
modeling or contextual analogy, or even more general forms of structural analogy. It is difficult 
to see how these subtler aspects of mentality could be integrated into the Neural Darwinist 
framework without altering it beyond recognition. It seems to me that they may require 
somewhat more structure than the self-organizing network of maps which Neural Darwinism 
proposes. 

 

11  

Consciousness and Computation  

      

11.0 Toward A Quantum Theory of Consciousness  

    For sixty years physicists have struggled with the paradox of quantum measurement. 
However, despite a number of theoretical advances, rather little progress has been made toward 
resolution of the basic dilemma. The problem is one of physics versus phenomenology. 
According to quantum physics, no physical entity is ever in a definite state; the most one can 
ever say about a given entity is that it has certain probabilities of being in certain states. And yet, 
both in daily life and in the laboratory, things do sometimes appear to have definite states.  

    For instance, the equations of quantum physics predict that, in many situations, an electron has 
a 50% "chance" of having a positive spin, and a 50% "chance" of having a negative spin. Yet 
when the physicist probes the electron in his laboratory, it appears to have either a positive spin 
or a negative spin. According to the equations of quantum physics -- the Heisenberg equation 
and the Schrodinger equation -- such a reduction to a definite state is impossible.     Of course, 
one may have various degrees of probabilistic knowledge. In certain situations, one might know 
an electron to have a 90% "chance" of having positive spin, and a 10% "chance" of having 
negative spin. But there can never be 100% definite knowledge. Heisenberg's indeterminacy 
principle says that one can never have complete knowledge of the state of any particle: the 
greater the accuracy with which one knows its position, the less the accuracy with which one can 
know its momentum; and vice versa. In order to predict what the particle will do in the future, 
one needs to know both the position and the momentum; but according to quantum physics, this 
is possible only probabilistically.  
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    This sort of indeterminacy is a proven scientific fact, inasmuch as quantum theory is the only 
known theory that correctly explains the behavior of microscopic particles, and it predicts only 
probabilities. Classical mechanics and electromagnetism gave definite answers about the 
behavior of microscopic particles, but these answers were experimentally wrong. Furthermore, it 
seems likely that, if quantum theory is someday superseded, the theory which followsit will build 
on the probabilistic nature of quantum theory, rather than regressing to classical ideas. In fact, it 
has been proved mathematically (Bell, 1964, 1987) that any physical theory satisfying certain 
simple requirements must necessarily have properties similar to those of quantum theory: it must 
deal only in probabilities.  

BEYOND THE PROJECTION POSTULATE  

    In his classic treatise on quantum theory, John von Neumann (1936) introduced the 
"projection postulate", an addition to the basic principles of quantum physics which states that, 
when an entity is measured, it reduces to a definite state. This approach appears to be adequate 
for most practical problems of quantum mechanics; and, although, many physicists find it 
unacceptable, there is no equally elegant alternative. The only trouble is that no one has ever 
given a satisfactory definition of "measurement".  

    Originally it was thought that a microscopic event could be considered to be measured when it 
"registered" an effect on some macroscopic entity. The justification for this was the belief that, as 
entities become larger and larger, the probabilistic nature of quantum physics becomes less and 
less relevant to their behavior. For instance, according to quantum physics a baseball dropped 
from a window has an infinity of possible paths, but one of them, or one small class of them, is 
overwhelmingly more likely than the others.  

    But this naive identification of measurement with macroscopic effect cannot stand up to 
criticism.     Spiller and Clark (1986) have constructed a Superconducting Quantum Interference 
Device (SQUID) which is about the size of a thumbnail and yet displays the same sort of 
uncertainty as an electron. One can never know both the intensity and the flux of its magnetic 
field with perfect accuracy; there is a finite limit beyond which further accuracy is impossible. Its 
state is fundamentally a probabilistic superposition.  

    And it appears that the brain may display a similar form of quantum indeterminacy 
(Changeaux, 1985; Penrose, 1990). Recall that a neuron fires when its charge exceeds a certain 
threshold amount. It follows that, on occasion, highly unpredictable quantum phenomena may 
push the charge of a neuron over the threshold. And this neuron may then set other neurons off, 
and so on -- in this manner a tiny quantum indeterminacy may give rise to a huge 
neurophysiological uncertainty. If the extra charge has a fifty-fifty chance of being there, then 
the entire pattern of neuronal firing that ensues from its presence probably has about a fifty-fifty 
chance of being there. A pattern of neuronal firing might, for instance, represent a state of mind. 
And when you consider the fact that there are over a hundred billion neurons in the brain, the 
possibilities for interlocking quantum uncertainties are astounding. The exact numbers are 
difficult to estimate, but it appears that this may be a significant phenomenon.  
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    One intriguing alternative to the projection postulate is Everett's (1957)"many-worlds 
hypothesis", which assigns to each uncertain situation an array of universes, one corresponding 
to each possible outcome. For instance, according to the many-worlds hypothesis, every time a 
physicist observes an electron to have positive spin, there is an alternate universe which is 
exactly identical to this one, except that in the alternate universe the physicist observes the 
electron to have negative spin. This is an interesting possibility, but it is empirically 
indistinguishable from the projection postulate, since these alternate universes can never be 
observed.  

THE QUANTUM THEORY OF CONSC IOUSNESS  

    Another alternative, first proposed by Wigner (1962), is that "measurement" may be defined as 
"registration into consciousness." To see the motivation for this radical idea, let us turn to the 
infamous paradox of Schrodinger's cat (1948). Here the peculiarity of quantum theory is elevated 
to the level of absurdity. Put a cat in a soundproofed cage with a radioactive atom, a Geiger 
counter and a vial of poison gas. Suppose that the atom has a half-life of one hour. Then it has a 
fifty-fifty chance of decaying within the hour. According to the dynamical equations of quantum 
physics, this is all one can know about the atom: that it has a fifty-fifty chance of decaying. 
There is no possible way of gaining more definite information.  

    Assume that, if the atom decays, the Geiger counter will tick; and if the Geiger counter ticks, 
the poison vial will be broken. This set-up is bizarre but not implausible; a clever engineer could 
arrange it or something similar. What is the state of the cat after the hour is up? According to 
quantum theory without the projection postulate, it is neither definitely alive nor definitely dead -
- but half and half. Because the atom never either definitely decays or definitely doesn't decay: 
quantum physics deals only in probabilities. And if the atom never either definitely decays or 
definitely doesn't decay, then the cat never definitely dies or definitely doesn't die.  

    One might argue that the cat is not in a state of superposition between life and death, but rather 
has a fifty percent chance of being alive and a fifty percent chance of being dead. But according 
to quantum theory without the projection postulate, the cat will never collapse into a definite 
state of being either alive or dead. What sense does it make to suggest that the cat has a fifty 
percent chance of entering into a state which it will never enter into? The function of the 
projection postulate is to change the statement that the cat is half dead and half alive into a 
statement about the probabilities of certain definite outcomes.  

    Of course, the fact is that if we look in the box after the hour is up, we either see a dead cat or 
a living cat. Phenomenologically, by the time the observation is made, one of the two 
possibilities is selected -- definitely selected. But when, exactly, does this selection occur? Since 
measurement cannot be defined as macroscopic registration, this is a very serious problem.  

     And the problem is resolved very neatly by the hypothesis that probabilisticoccurrences are 
replaced by definite occurrences when they enter consciousness.  
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    For instance, this implies that Schrodinger's cat is not half dead and half alive, but rather has a 
fifty percent chance of being dead and a fifty percent chance of being alive. The cat becomes 
definitely dead or definitely alive when a conscious being sees it. As Goswami put it,  

        it is our consciousness whose observations of the cat resolves its dead-or-alive dichotomy. 
Coherent superpositions, the multifaceted quantum waves, exist in the transcendent order until 
consciousness brings them to the world of appearance with the act of observation. And, in the 
process, consciousness chooses one facet out of two, or many, that are permitted by the 
mathematics of quantum mechanics, the Schrodinger equation; it is a limited choice, to be sure, 
subject to the overall probability constraint of quantum mathematics (i.e. consciousness is 
lawful).... [C]onsciousness... is not about doing something to objects via observing, but 
consists of choosing among the alternative possibilities that the wave function presents and 
recognizing the result of choice. (1990, p. 142)  

That is, the mind does not create the world in the sense of reaching out and physically modifying 
events. But it creates the world by selecting from among the wide yet limited variety of options 
presented to it by the probabilistic equations of physics.  

11.1 Implications of the Quantum Theory of Consciousness  

    The measurement paradox is not the only philosophically troublesome aspects of quantum 
physics. Bell's Theorem (1987), with its implication of instantaneous communication between 
distant events, is equally unsettling. The simplest example of this is the Einstein-Podolsky-Rosen 
(EPR) thought experiment. Two electrons, initially coupled, are shot off in different directions. It 
is assumed that each one flies for millions of miles without hitting anything. Each one, according 
to quantum physics, has a fifty-fifty chance of spinning to the right or to the left -- there is no 
way to make a more accurate prediction. However, the rules of quantum physics do imply that 
the two are spinning in opposite directions: if one is spinning to the right, then the other one is 
spinning to the left; and vice versa.  

    Now suppose someone measures one  of the electrons, and that it all of a sudden assumes a 
definite value. Then the other electron will immediately also assume a definite value -- because 
it is known that the two are spinning in opposite directions. If one is measured to be spinning to 
the right, then the other is instantaneously known to be spinning to the left. When Einstein 
conceived this example, he thought he had disproved quantum mechanics -- because nothing so 
absurd could possibly be true. After all, he asked how doesthe one electron tell the other one 
which way to spin? Special relativity forbids information to travel faster than the speed of light; 
so it would seem that if the particles were sufficiently distant, the value of the spin of one 
particle could take eons to reach the other particle.  

    But, absurd as this may be, it is an experimentally proven fact (Aspect and Grangier, 1985). 
Scenarios very similar to the original EPR thought experiment have been tested in the lab. It 
turns out that, mathematically speaking, this peculiar "nonlocality" does not contradict special 
relativity, because no information is being transmitted, only a correlation. But this is very little 
consolation: it is a violation against the spirit, if not the letter, of special relativity.  
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    Reality does not consist of pairs of electrons, coupled and then shot out into space a million 
miles in opposite directions. Consider the following thought experiment. Split apart two coupled 
physical systems, say A and B. Suppose that, from the state of A, one could infer the state of B, 
and vice versa. Leave A alone but let B interact with C for a while, and then separate B from C. 
Finally, measure A. A is collapsed into some definite state. If B had not interacted with C, one 
could say that the state of B would also, immediately, collapse into some definite state. But the 
state of B now depends also upon the state of C, which according to quantum physics has no 
definite value but is rather an array of possibilities. So the measurement of A does not collapse B 
to a definite state. But it does, however, decrease the uncertainty involved in the state of B. It 
increases the "closeness" of B to a definite state.  

    Technically speaking, assume that p=(p1,p2,...,pn) denotes the probabilities of the various 
possible states in which B might be. Then one may show that, in the situation described above, 
the measurement of A necessarily changes p into a new set of probabilities p%=(p1%,...,pn%) so 
that H(p1,...,pn) < H(p1%,...,pn%), where H is the entropy function  

    H(p1,...,pn) = -[p1logp1 + ... + pnlogpn]  

A similar statement may be made when the possible states of B form a continuum rather than a 
discrete set. Recall that the entropy of a probability distribution is a measure of its uncertainty, or 
its distance from the most certain distribution.  

This thought experiment may be generalized. What if the state of B cannot be completely 
determined from the state of A? If the state of A yields any information at all about the state of 
B, then it is plain that the same result holds. If A and B were ever coupled, no matter how 
loosely, no matter what they have done since, measurement of A reduces the uncertainty of the 
probability distribution characterizing the states of B. Bell's Theorem implies that this sort of 
propagation of certainty is a necessary aspect of any physical theory that is mathematically 
similar to quantum theory.  

     In terms of the quantum theory of consciousness, what does this mean? A little consciousness 
can go a long way! If two sets of possibilities have been coupled in the past, and are then 
separated, then whenever consciousness makes one of them definite, the other one becomes 
definite automatically,instantaneously, without any physical causation involved.  

QUANTUM CONSCIOUSNESS, BIOLOGICAL CON SCIOUSNESS  

    By introducing consciousness, one obtains a philosophically elegant resolution of the paradox 
of quantum measurement. But in a way we are abusing the word "consciousness". What qualities 
does this abstract entropy-decreasing consciousness share with the common-sense understanding 
of consciousness? We have reconciled the physics of measurement with the phenomenology of 
measurement only by separating the physics of consciousness from the phenomenology of 
consciousness.  

    Mandler has proposed that  
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        ... [C]onscious constructions represent the most general interpretation that is appropriate to 
the current scene in keeping with both the intentions of the individual and the demands of the 
environment. ...Thus, we are aware of looking at a landscape when viewing the land from a 
mountaintop, but we become aware of a particular road when asked how we might get down or 
of an approaching storm when some dark clouds "demand" inclusion in the current construction. 
In a problem-solving task, we are conscious of those current mental products that are closest to 
the task at hand, i.e. the likely solution to the problem. (1985, p.81)  

Whether or not this particular formulation is exactly correct, it seems plain that some similar 
characterization must hold true. Consciousness seems to have a role in planning and decision-
making, but it is rarely involved in the minute details of everyday life: walking, turning the pages 
of a book, choosing words in conversation, doing arithmetic with small numbers, etc. In the 
language of the previous chapters, this means that -- as already stated -- consciousness has 
contact with only a certain restricted range of the perceptual hierarchy.  

    The decision-making aspect of consciousness is intuitively harmonious with quantum theory: 
in making a decision, one is reducing an array of possibilities to one definite state. There is a 
sense in which making a decision corresponds to selecting one of many possible universes. But 
the quantum theory of consciousness gives us no indication of why certain decisions are 
submitted to consciousness, but others are not.  

    One of the main problems here is that it is not clear what function the quantum theory of 
consciousness is supposed to serve. In Wigner (1962) or Goswami (1990), consciousness is 
essentially defined as the reduction to a definite state, or more generally as the decrease of the 
entropy of an array of possible states. This interpretation gives a transcendentalist resolution of 
the mind-body problem, made explicit by Goswami when he suggests that, as a heuristic tool, we 
consider the mind to be a coupling of two computers, a classical computer and a quantum 
computer. The quantum computer behaves in a way which transcends ordinary biophysics, and it 
is this transcendencewhich is responsible for consciousness.  

    But there is another, more radical, way of interpreting the quantum theory of consciousness. 
One may begin with the assertion that consciousness is a process which is part of the dynamics 
of certain physical systems, e.g. human brains. This means that consciousness has some direct 
physical effect: that, for instance, when a pattern of neural firings enters consciousness, 
consciousness changes it in a certain characteristic way. The biochemical nature of this process 
is of course largely unknown. However, Edelman (1989) has made some very interesting 
hypotheses. In his notation, consciousness may be described as the continual interaction between 
C(W) and C[C(W). C(I)], where  

              

            C(I) is the neural basis for categorization of I, the interoceptive input             -- 
autonomic, hypothalamic, endocrine. It is evolutionarily earlier,             driven by inner events, 
mediated by limbic and brain-stem circuits             coupled to biochemical circuits, and it shows 
slow phasic activity.             C[W] is the neural basis for perceptual categorization of W, the 
            exteroceptive input -- peripheral, voluntary motor, proprioceptive  
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            and             polymodal sensory signals -- and is mediated by the thalmus and 
            cortical areas. It is driven largely by outer events, is fast, and             handles many more 
signals in parallel. C(W).C(I) represents the             neural basis of interaction and comparison of 
two categorical systems             that occurs, for example, at the hippocampus, septum, and 
cingulate             gyri. C[C(W).C(I)] is the neural basis of conceptual recategorization  

            of this comparison, which takes place in the cingulate gyri, temporal  

            lobes, and parietal and frontal cortex. (The boldface C indicates             conceptual 
categorization.)  

Less technically, what Edelman proposes is that consciousness is the interaction between two 
processes: 1) the recognition of patterns in perceptions, and 2) the interaction between the 
recognition of patterns of perception and the recognition of patterns in internal, emotional, 
chemical stimuli.  

    Given this biological characterization of consciousness, one may then hypothesize that the 
entropy reduction of arrays of possible states is correlated with those changes the states of 
conscious systems which correspond to conscious acts. This point of view -- which I will call the 
strong interaction postulate -- places less responsibility on quantum theory than the 
interpretation of Wigner and Goswami: it does not require quantum theory to explain 
psychological facts. Rather, it portrays consciousness as the point of connection between psycho-
biological dynamics and physical dynamics; the bridge between the mind and the world.  

    The quantum theory of consciousness, as presented by Wigner or Goswami, implies a 
transcendentalist resolution of the mind-body problem. But though it is useful for intuitively 
understanding quantum theory, it is not at all adequate for understanding consciousness. The 
strong interaction postulate is not merely a reinterpretation of quantum theory: it states that 
consciousness, in some sense,plays an active role in forming the physical world.  

    In terms of the many-worlds interpretation, strong interaction implies that the brain-states of 
conscious entities put a special bias on the possible universes of the future. Everything in the 
universe figures into the array of probabilities of possible future universes -- but conscious 
systems are involved in an additional feedback process with this array.  

    The idea of strong interaction may be worked out in much more detail, but that would lead us 
too far astray. It may be that future developments in physics will render this entire discussion 
nonsensical. However, as Penrose (1989) has pointed out, it is also possible that the relation 
between mind and body will be essential to the next revolution in physics.  

SELF-AWARENESS  

    Finally, I would like to point out that the quantum view of consciousness yields an interesting 
interpretation of that intangible feeling of self-awareness that accompanies consciousness of 
external objects or definite ideas. Consider the following scenario. P and Q are closely coupled 
algorithms, each one continually modifying the other. Simultaneously, consciousness greatly 
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reduces the uncertainty of both the distribution of possible states of P and the distribution of 
possible states of Q. The reduction of the uncertainty P then reduces the uncertainty of Q yet 
further; and vice versa. The result is that the combined entity P%Q has, in effect, looked at itself 
and reduced its own entropy.  

    It is not justifiable to say that P%Q did not really look at itself, that what really happened was 
that P and Q looked at each other. Because according to quantum physics, if we observed P % Q 
to see what was really happening, this would change the probability distributions. P and Q are 
quantum coupled, and this means they are effectively one entity. Clearly, this situation is not 
rare: feedback between different prominent structures is probably not the exception but the rule.  

    According to this analysis, the feeling of self-awareness is not logically inherent to 
consciousness; it is rather an extremely common by-product of consciousness. This accounts for 
the fact that we are not continually absorbed with the sensation of self-awareness: it flits in and 
out of consciousness. Self-awareness is not quite the same as consciousness, but the two are 
inextricably interlinked.  

INTELLIGENCE AND CONSCIOUSNESS  

    Clearly, the quantum theory of consciousness is in a very early stage of development. 
However, none of the details are really essential here. The primary point of our excursion 
through quantum theory was to arrive at one simple hypothesis: that whereas Turing machines 
cannot possess consciousness,quantum computers can.  

    This hypothesis has profound implications for the relation between consciousness and 
intelligence. To see this, we must consider a certain crucial but vastly under appreciated 
shortcoming of the theory of Turing machines. Mathematically, it is easy to deal with Turing 
machines of arbitrarily large processing capacity. But in physical reality, it is impossible to build 
an arbitrarily powerful Turing machine.  

    If the parts of a machine are very small or very closely packed, then they are susceptible to 
quantum effects, and the machine is a quantum computer, not strictly a Turing machine: its 
behavior depends crucially on the peculiar properties of indeterminacy and nonlocality. But if the 
parts of a machine are not very small, and not very closely packed, then they must spread over a 
large expanse of space. However, according to the theory of special relativity, information 
cannot travel any faster than the speed of light. Therefore, there is a limit to the speed of a 
machine made of large and/or sparse parts.  

    From these considerations it follows that, for any given time period T, there is a certain limit 
to the amount of computation that a physical Turing machine can do in time T. Even without 
estimating the specific numbers, it is clear that this limit is considerably smaller than the total 
amount of computation which a quantum computer can do in time T. Deutsch has shown that an 
abstract quantum computer cannot compute any functions which an abstract Turing machine 
cannot also compute. However, within any specified period of time, there is some physical 
quantum computer which can compute functions that no physical Turing machine can.       
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    Now, intelligence depends not only on absolute computing power but also on speed. Therefore 
it follows from our assumptions that there is a certain degree of intelligence which quantum 
computers can attain but Turing machines cannot. Coupling this with the hypothesis that 
quantum computers but not Turing machines possess consciousness, one obtains the following 
intriguing conclusion: there may be a certain level of intelligence which can be attained only 
by conscious entities.  

11.2 Consciousness and Emotion  

    One often hears comments to the effect that "even if a computer could somehow think, it could 
never feel." And Dreyfus (1978), among others, has argued that this imposes strict limitations on 
the potential power of computer thought. After all, what is intuition but a sense of what "feels 
right"?  

    The weakest point of such arguments is that they do not refer to any particular definition of 
emotion. Without a definition of emotion broad enough to apply, at least potentially, to entities 
substantially different from human beings, how can one make a fair judgement as to the 
emotional capacity of computers?  

    One might argue that no such general definition is possible; that the only wayto understand 
human emotions is through human biology, which is inherently applicable only to entities 
substantially similar to human beings. This argument is bolstered by the numerous vagaries and 
self-contradictions which plague psychoanalysis and other classical theories of emotion, and also 
by the many impressive achievements of molecular psychology. However, it is nonetheless not 
implausible that there is a general structure of emotion.  

    In his 1887 classic Laws of Feeling, Paulhan made an intriguing suggestion as to what this 
structure might be. And more recently, Mandler (1985) has outlined a theory very similar to 
Paulhan's, and gathered together a great deal of data in favor of it. These theories are preliminary 
and incomplete, and they are not essential to the main ideas of this book. However, they do 
indicate how one might develop a theory of emotion compatible with the ideas of the previous 
chapters.  

    MacCurdy, a psychoanalyst, expressed Paulhan's core idea excellently in his 1925 Psychology 
of Emotion: it is precisely  

        when instinctive reactions are stimulated that do not gain expression, that affect is most 
intense. It is the prevention of the expression of instinct either in behavior or conscious thought 
that leads to intense affect. In other words, the energy of the organism, activating an instinct 
process, must be blocked by repression before poignant feeling is excited.  

In his own words, Paulhan's general law of feeling is simply that  

        desires ... only give rise to affective phenomena when the tendency awakened undergoes 
inhibition.  
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Throughout Laws of Feeling, Paulhan implicitly assumes that "tendencies" are the stuff of mind. 
Since he never actually defines the word "tendency", I see no problem with reading "tendency" 

as "behavioral pattern".  

    In the language of the preceding chapter, a "desire" is an instruction passed down the motor 
control hierarchy. Very low-level instructions probably do not deserve the label "desire", but 
there is no rigid cut-off point: the higher the level of an instruction, the more it is a "desire". 

Paulhan's hypothesis is that emotions occur only when such an instruction is not obeyed. This 
disobeyal may be due to mental incapacity or to the uncooperativeness of external reality. 

Emotion would never occur in an all-powerful, all-knowing, perfectly-running machine, because 
all of its internal instructions would invariably be fulfilled. Livesey, in the first volume of his 

1986 Learning and Emotion, has sketched out similar ideas, although his analysis is less specific 
and hence less controversial.  

HAPPINESS  

    Paulhan apparently did not try very hard to apply his theory to particular emotions. He 
considered this to be an elementary exercise. Unfortunately, Icannot agree with him on this 

point: I have found this "exercise" to be formidably difficult. However, Paulhan did make two 
clear definitions, so let us consider these: happiness is the feeling of increasing order; 

unhappiness is the feeling of decreasing order.  

    Paulhan did not define order; in the present context, it seems most straightforward to define 
the order of a set of patterns X as the sum over all x in X of the average, over all neighbors (y,z) 

of x in the mind's STRAM, of IN[x;(y,z)]. This implies that the "feeling of increasing order" is 
the "feeling of increasingly simple representation of the contents of one's subjective world." 

    To put it rather pedantically, this means that happiness is the feeling of recognizing patterns 
more effectively than in the immediate past; and, on the other hand, unhappiness is the feeling of 
recognizing patterns less effectively than in the immediate past. Or, more intuitively: happiness 

is the feeling of increasing unity.  

    The only puzzling thing about this is that, according to Paulhan's definition, all emotion 
derives from inhibition; and therefore the "feeling of increasing simplicity" must mean the 

inhibition of those patterns which are rendered unnecessary or impossible by the advent of 
increasing simplicity. Is happiness, then, the feeling of stifling all the fruitless attempts to order 
the world which are rendered irrelevant by success? And is unhappiness, the feeling of stifling 
the habits instilled by a previously successful simplifying order of the world, in favor of further 

laborious attempts?  

    This may seem a little bit bizarre. I would argue that, at any rate, this is one  important 
meaning of the word "happiness." For instance, it explains, in a very rough way, why young 
children (who are continually presented with highly novel stimuli) obtain such pleasure from 
exploring and understanding. And, conversely, it also explains the human tendency toward 
closed-mindedness: the intrusion of novel patterns into a mental world of familiar ideas and 

routines will usually, at first anyhow, cause a decrease in the simplicity of one's representation of 
the world.  
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BEAUTY  

    Next, let us consider the experience of aesthetic appreciation, of "beauty." One may define the 
beauty of X to Y as the amount of happiness gained by Y from the patterns which Y perceives in 
X, and this is not unsatisfactory, but it would be nice to have a definition which provided insight 
into the internal structure of the beautiful object. This we shall draw not from Paulhan, but from 

a loose interpretation of the work of Georg Simmel.  

    In his essay on "The Face", Simmel (1959) proposed that "the closer the interrelation of the 
parts of a complex, and the livelier their interaction (which transforms their separateness into 

mutual dependence)," the greater the aesthetic significance of that complex. It seems to me that 
this "unity out of and above diversity," this "interaction" and "interrelation of the parts" is very 

well summedup by the concept of structural complexity. After all, an entity is not a priori divided 
into "parts"; the mind divides it into parts as part of the process of perception and comprehension 
-- the "parts" are patterns. And the "degree of interrelation" of the various patterns is, I suggest, 
simply the amount of pattern tying together the various patterns -- in other words, the structural 
complexity. Thus, it seems reasonable that the beauty of x to y is the happiness associated with 
that portion of St(x) which is perceived by y. Simmel's conception of beauty as emergent order 

coincides perfectly with Paulhan's idea of happiness as increasing order.  

FREE WILL  

    Free will and consciousness are often considered identical. Conscious decisions are considered 
freely willed. However, this point of view is unjustified. The first argument against free will is 

that, physiologically and psychologically, it is clear that conscious decisions are far from 
unpredictable. They are influenced very strongly by unconscious memories and biases, i.e. by 

parts of the brain which have no direct role in consciousness. This argument might be 
contradicted as follows: perhaps other influences bias consciousness, but they do not determine 
its behavior completely. They influence the likelihood of consciousness making one decision or 

another, but this only permits us to predict the outcome of consciousness in a rough probabilistic 
sense.  

    But, if this is the case, then how does consciousness actually make a choice? Empirically, 
there is no way of distinguishing between the hypothesis that a choice is made by free will, and 
the hypothesis that it is made at random subject to the probability distribution induced by 

outside influences.  

    So the existence of free will is essentially a moot point. I suspect that, in the future, it will be 
more fruitful to analyze free will as an emotion. To see how this might be done, consider 

Nietszche's analysis of "freedom of the will" as  

     

    the expression for the complex state of delight of the person exercising volition, who 
commands and at the same time identifies himself with the executor of the order -- who, as such, 
enjoys also the triumph over obstacles, but thinks within himself that it was really his will itself 
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that overcame them. In this way the person exercising volition adds the feelings of delight of his 
successful executive instruments, the useful 'underwills' or undersouls -- indeed, our body is but 
a social structure composed of many souls -- to his feelings of delight as commander. L'effet 
c'est moi: what happens here is what happens in every well-constructed and happy 
commonwealth; namely, the governing class identifies itself with the successes of the 
commonwealth. (1968, p.216)  

The feeling of free will, according to Nietszche, involves 1) the feeling that there is indeed an 
entity called a "self", and 2) the assignation to this "self" of "responsibility" for one's acts. It is 
easy to see how such a feeling would fallunder the category of happiness, because it certainly 
does serve to impose a simple "order" on the confusing interplay of patterns underlying mental 
action.     But what is this pattern called the "self", which the mind recognizes in its own 
operation? Given a definition of "self", free will could be defined as the emotion resulting from 
the "belief" or "recognition of the pattern" that, in the absence of the self, effective pattern 
recognition (i.e. happiness) would not be possible. But even then the question why this belief 
would emerge would not be answered. Clearly there is a great deal of subtlety involved here, and 
we do not yet possess the tools with which to probe it.  

EMOTION, COMPUTATION AND CONSCIOUSNESS  

    Regarding the emotional capacity of computers, Paulhan's theory yields an ambiguous verdict. 
Emotion is analyzed to involve a certain characteristic structure . One may say that this 
characteristic structure only becomes true emotion when it enters consciousness, in which case it 
might well be that a quantum computer but not a Turing machine can experience emotion. Or, on 
the other hand, one may say that this structure is always emotion, whether or not it is 
consciously experienced. Essentially this is a matter of semantics.  

    Mandler (1975) has made a similar point, observing that emotions have a "hot" aspect and a 
"cold" aspect. The cold aspect is the abstract structure of nonfulfillment of expectation. The hot 
aspect has to do with the presence of certain chemical factors which cause the vivid, visceral 
experience of emotion. One might say also that the cold aspect has to do with mind, the hot 
aspect with body. It may be that consciousness is a prerequisite for "hotness". The hot aspect of 
emotion is the bodily effect of the abstract mental nonfulfillment of expectation. The means by 
which this effecting takes place -- by which structure affects chemical levels -- is essentially 
unknown.  

    And, if consciousness is a prerequisite for emotion, is it perhaps also true that emotion is a 
necessary part of consciousness? It is well known that, when a person summons something from 
long-term memory into consciousness, the limbic system is activated. The exact reason for this is 
a mystery, but it is also well known that the limbic system is the center of emotion. This reflects 
a psychological concept that goes back at least to Freud, who suggested that it may be 
impossible to remember something unless that something possesses some emotional content.  

    This "Freudian" hypothesis coincides well with the present model of mind. We have 
hypothesized that consciousness contains the most "prominent" patterns in the mind, where a 
"prominent" pattern is both intense as a pattern, and the object of a great deal of activity on high 
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levels of the motor control hierarchy. Is it not reasonable that a great deal of activity will center 
around those instructions which are not obeyed the first time around? Merely by virtue of their 
failure, they will receive more attention -- they have to be tried again, or alternatives have to be 
found.  

    In conclusion: all that can be said with certainty is that consciousness and emotion are closely 
related. The nature of this relation is not yet clear. It appears that emotion may be understood to 
consist of two aspects: "hot" and "cold", or perhaps "conscious" and "structural". Perhaps the 
structural aspect of emotion may exist independently of the conscious, hot aspect; but in practice 
the two seem to usually occur together. 

 

 
12  

The Master Network  

      

12.0 The Structure of Intelligence  

The ideas of the previous chapters fit together into a coherent, symbiotic unit: the master 
network. The master network is neither a network of physical entities nor a simple, clever 
algorithm. It is rather a vast, self-organizing network of self-organizing programs, continually 
updating and restructuring each other. In previous chapters we have discussed particular 
components of this network; but the whole is much more than the sum of the parts. None of the 
components can be fully understood in isolation.  

    A self-organizing network of programs does not lend itself well to description in a linear 
medium such as prose. Figure 11 is an attempt to give a schematic diagram of the synergetic 
structure of the whole. But, unfortunately, there seems to be no way to summarize the all-
important details in a picture. In Appendix 1, lacking a more elegant approach, I have given a 
systematic inventory of the structures and processes involved in the master network: 
optimization, parameter adaptation, induction, analogy, deduction, the structurally associative 
memory, the perceptual hierarchy, the motor hierarchy, consciousness, and emotion.  

    These component structures and processes cannot be arranged in a linear or treelike structure; 
they are fundamentally interdependent, fundamentally a network. At first glance it might appear 
that the master network is impossible, since it contains so many circular dependencies: process A 
depends on process B, which depends on process C, which depends on process A. But, as 
indicated in the previous chapters, each process can be executed independently -- just not with 
maximal effectiveness. Each process must do some  proportion of its work according to crude, 
isolated methods -- but this proportion may be reduced to a small amount.       
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    Figure 11 and Appendix 2 provide the background necessary for my central hypothesis: that 
the master network is both necessary and sufficient for intelligence.  

    As in Chapter 4, let us define general intelligence as the average of L-intelligence, S-
intelligence, and R.S.-intelligence, without specifying exactly what sort of average is involved. 
Then, using the ideas of Chapters 4 and 5, one may easily prove the following:  

Theorem 12.1: For any computable set of patterns C, and any degree D of     general 
intelligence, there is some master network which has general intelligence D relative to C.  

However, it is also clear from Chapter 5 that most of the master network is not essential for this 
result. In particular, we have:  

Theorem 12.2: Theorem 12.1 holds even if the perceptual and motor     control hierarchies only 
have one level each, and even if the global optimizer works by the Monte Carlo method.  

In fact, even this assumes too much. The essential core of the master network consists the 
induction processor, the global optimizer and the parameter adaptor. One may show  

Theorem 12.3: Theorem 12.1 holds even if all perception, induction and     parameter adaptation 
are executed by Monte Carlo optimization, and the     analogy and deduction processors do not 
exist.  

FEASIBLE INTELLIGENCE  

    The problem is that Theorem 12.1 and its offshoots do not say how large a master network 
needs to be in order to attain a given degree of intelligence. This is absolutely crucial. As 
discussed in Chapter 11, it is not physically possible to build a Turing machine containing 
arbitrarily many components and also working reasonably fast. But it is also not possible to build 
a quantum computer containing arbitrarily many components and also working reasonably fast. 
Quantum computers can be made smaller and more compact than classical Turing machines, but 
Planck's constant would appear to give a minimum limit to the size of any useful quantum 
computer component. With this in mind, I make the following hypothesis:  

Hypothesis 12.1: Intelligent computers satisfying the restrictions imposed by     Theorem 12.3, 
or even Theorem 12.2, are physically impossible if C is, say, the set of all N'th order Boolean 
functions (N is a very large number, say a billion or a trillion).  

This is not a psychological hypothesis, but it has far-reaching psychological consequences, 
especially when coupled with the hypotheses made at the end of Chapter 4, which may be 
roughly paraphrased as  

Hypothesis 12.2: Every generally intelligent system, relative to the C     mentioned in the 
Hypothesis 12.2, contains a master network as a significant part of its structure.  
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Taken together, these two hypotheses imply that every intelligent system contains every 
component of the master network.  

    In conclusion, I think it is worth getting even more specific:  

Hypothesis 12.3: Intelligent computers (relative to the C mentioned in     Hypothesis 12.2) in 
which a high proportion of the work of each component of the master network is done 
independently of the other components -- are physically impossible.  

    All this does not imply that every intelligent system -- or any intelligent system -- contains 
physically distinct modules corresponding to "induction processor", "structurally associative 
memory," and so on. The theorems imply that the master network is a sufficient structure for 
intelligence. And the hypotheses imply that the master network a necessary part of the structure 
of intelligence. But we must not forget the definition of structure. All that is being claimed is that 
the master network is a significant pattern in every intelligent system.     According to the 
definition given in Chapter 4, this means that the master network is a part of every mind. And, 
referring back to the definition of pattern, this means nothing more or less than the following: 
representing (looking at) an intelligent system in terms of the master network always yields 
a significant amount of simplification; and one obtains more simplification by using the 
entire master network than by using only part.  

PHILOSOPHY OR SCIENCE?  

    To demonstrate or refute these hypotheses will require not only new mathematics but also new 
science. It is clear that, according to the criterion of falsification, the hypotheses are  indeed 
scientific. For instance, Hypothesis 12.2 could be tested as follows:  

1) prove that system X is intelligent by testing its ability to optimize a variety of complex 
functions in a variety of structurally sensitive environments  

2) write the physical equations governing X, mathematically determine the set of all patterns in 
X, and determine whether the master network is a significantpart of this set  

We cannot do this experiment now. We must wait until someone constructs an apparently 
intelligent machine, or until neuroscientists are able to derive the overall structure of the brain 
from the microscopic equations. But, similarly, no one is going to make a direct test of the Big 
Bang theory of cosmology or the theory of evolution by natural selection, at least not any time 
soon. Sometimes, in science, we must rely on indirect evidence.  

    The theory of natural selection is much simpler than the theory of the master network, so 
indirect evidence is relatively easy to find. The Big Bang theory is a slightly better analogy: it is 
not at all simple or direct. But the theories of differential geometry, functional analysis, 
differential equations and so forth permit us to deduce a wide variety of indirect consequences of 
the original hypothesis. In principle, it should be possible to do something similar for the theory 
of the master network. However, the master network involves a very different sort of 
mathematics -- theoretical computer science, algorithmic information theory, the theory of 
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multiextremal optimization, etc. These are very young fields and it will undoubtedly be difficult 
to use them to derive nontrivial consequences of the theory of the master network.  

12.1 Design for a Thinking Machine   

    A theory of mind and a theory of brain are two very different things. I have sketched an 
abstract Platonic structure, the master network, and claimed that the structure of every intelligent 
entity must contain a component approximating this structure. But it would be folly to deny that 
different entities may approximate this structure in very different ways.  

    A general study of the emergence of minds from physical systems would require a general 
theory of networks of programs. But of course no such theory presently exists (see Appendix 2 
for a summary of certain preliminary results in the field). Thus we cannot give a comprehensive 
answer to the question: what sorts of machines, if constructed, would be able to think? In talking 
about thinking machines, we will have to be contented with very specialized considerations, 
improvising on the themes of computer science and neuroscience.  

    Most of the workings of the brain are still rather obscure. We have an excellent understanding 
of the workings of individual brain cells (Hille, 1984); and we have long known which regions of 
the brain concentrate on which functions. What is lacking, however, is a plausible theory of the 
intermediate scale. The study of the visual cortex, reviewed above, has brought us a great deal 
closer to this goal. But even here there is no plausible theory relating thoughts, feelings and 
"mind's-eye" pictures to the microscopic details of the brain.  

    In Chapters 6 and 10, lacking a truly effective theory of intermediate-level brain structure, we 
have made use of what I consider to be the next best thing: Edelman's "Neural Darwinism," a 
slightly speculative but impressively detailed model of low-to-intermediate-scale brain structure. 
I suspect that Neural Darwinism is incapable of explaining the higher levels of cognition and 
memory; but, be that as it may, the theory is nonetheless essential. As suggested in Chapters 6 
and 10, it indicates how one might go about establishing a nontrivial connection between brain 
and mind. And furthermore, it leads to several interesting ideas as to how, given sufficient 
technology, one might go about constructing an intelligent machine. In closing, let us sketch one 
of these ideas.  

OMPs, AMPs and nAMPs   

    In what follows I will speculate as to what global neural structure might conceivably look 
like. This should not be considered a theory of the brain but a design for a brain, or rather a 
sketch of such a design -- an indication of how one might draw blueprints for a thinking 
machine, based loosely on both the idea of the master network and the theory of Neural 
Darwinism. The "zero level" of this design consists of relatively sophisticated 
"optimization/memory processors" or OMPS, each of which stores one function or a fairly small 
set of related functions, and each of which has the capacity to solve optimization problems over 
the space of discrete functions -- e.g. to search for patterns in an input -- using the functions 
which it stores as initial guesses or "models". For instance, the multi-leveled "Neural Darwinist" 
network of maps described at the end of Chapter 10 could serve as an OMP. It is biologically 
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plausible that the brain is composed of a network of such networks, interconnected in a highly 
structured manner.  

    Next, define an "analogy-memory processor," an AMP, as a processor which searches for 
patterns in its input by selecting the most appropriate -- by induction/analogy/deduction -- from 
among an assigned pool of OMPs and setting them to work on it. Each AMP is associated with a 
certain specific subset of OMPs; and each AMP must contain within it procedures for general 
deductive, inductive and analogical reasoning, or reasonable approximations thereof. Also, each 
AMP must be given the power to reorganize its assigned pool of OMPs, so as to form a 
structurally associative memory. There should be a large amount of duplication among the OMP 
pools of various AMPs.  

    And similarly, define a "second-level analogy-memory processor," a 2AMP, as a processor 
which assigns to a given input the AMP which it determines -- by induction/analogy/deduction -- 
will be most effective at recognizing patterns in it. Define a 3AMP, 4AMP, etc., analogously. 
Assume that each nAMP (n>1) refers to and has the power to reorganize into rough structural 
associativity a certain pool of (n-1)AMPS.  

    Assume also that each nAMP, n=2,..., can cause the (n-1)AMPs which ituses frequently to be 
"replicated" somehow, so that it can use them as often as necessary. And assume that each AMP 
can do the same with OMPs. Physically speaking, perhaps the required (n-1)AMPs or OMPs 
could be put in the place of other (n-1)AMPs or OMPs which are almost never used.  

    A high-level nAMP, then, is a sort of fractal network of networks of networks of networks... 
of networks. It is, essentially, an additional control structure imposed upon the Neural Darwinist 
network of maps. I suspect that the Neural Darwinist network of maps, though basically an 
accurate model, is inadequately structured -- and that, in order to be truly effective, it needs to be 
"steered" by external processes.  

    I will venture the hypothesis that, if one built a nAMP with, say, 15 levels and roughly the size 
and connectivity of the human brain -- and equipped it with programs embodying a small subset 
of those special techniques that are already standard in AI -- it would be able to learn in roughly 
the same way as a human infant. All the most important aspects of the master network are 
implicitly or explicitly present in the nAMP: induction, pattern recognition, analogy, deduction 
structurally associative memory, and the perception and motor control hierarchies.  

    In conclusion: the nAMP, whatever its shortcomings, is an example of a design for an 
intelligent machine which is neither AI-style nor neural-network-style. It is neither an ordinary 
program nor an unstructured assemblage of programs; nor a self-organizing network of neurons 
or neural clusters without coherent global structure. It is a program, and a network of physical 
entities -- but more importantly it is a network of networks of networks ... of networks of 
programs; a network of networks of networks... of networks of neural clusters. In this context it 
seems appropriate to repeat Hebb's words, quoted above: "it is... on a class of theory that I 
recommend you to put your money, rather than any specific formulation that now exists." The 
details of the nAMP are not essential. The point is that, somehow, the dynamics of neurons and 
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synapses must intersect with the abstract logic of pattern. And the place to look for this 
intersection is in the behavior of extremely complex networks of interacting programs.  

 

Appendix 1  

Components of the Master Network  

      

Structure: Perceptual Hierarchy  

Internal Structure: Composed of a hierarchy of levels, each level     containing a number of 
processors which may interact with each other and with processors on lower or higher levels.  

Internal Processes: Each processor obtains input from processors     on lower levels, and sends 
output to processors operating on higher levels. Each processor operates by guessing the most 
likely, simplest "reality" underlying its input, using Bayes' rule and probably, on lower levels, the 
maximum entropy principle.  

        The range of possibilities is given by hard-wiring and/or induction and/or deduction and/or 
analogy; the a priori background distribution is given by hard-wiring and/or induction and/or 
deduction and/or analogy; and the properties of potential realities are given by hard-wiring 
and/or induction and/or deduction and/or analogy. As one goes higher and higher up the 
hierarchy, induction, analogy and deduction are relied upon more heavily, and the estimation 
sticks closer and closer to the background distribution. And as induction, analogy and deduction 
are relied upon more heavily, the processing becomes slower and slower.  

        Information is passed from the top down when a processor tells one of the processors that 
gives it input what sort of things it should look for. This overall regulation operates according to 
the multilevel optimization methodology.  

Dependencies: Induction processor, deduction processor, analogy processor  

Functions: Supplies the induction processor and the parameter adaptor with the pattern 
recognition they require.  

Structure: Motor Control Hierarchy  

Internal Structures: Composed of a hierarchy of levels, each level containing a number of 
processors which may interact with each other and with processors on lower or higher levels.  

Internal Processes: Each processor gives processors on lower levels goals, and each processor 
refers to the parameter adaptor for information on how to achieve these goals. The success of 
each processor is continually relayed to the parameter adaptor.  
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Dependencies: Parameter adaptor.  

Functions: Directly controls the action of the system; the effect of mind on body and therefore 
world.  

Structure: Structurally Associative (Long-term) Memory  

Internal Structures: A network of processors, each one containing a certain pattern, which is 
continually reorganizing itself to approximate the  

structure of a network of emergence (i.e. of a network in which X and Y are  

stored near all functions which are patterns emergent between X and Y). Any  

particular pattern may be stored in a number of different places. Along with each pattern is 
stored the parameters by which the global optimizer can best recognize patterns in it.  

Internal Processes: Reorganization must follow some special-case optimization algorithm. In 
order for structurally associative organization to be possible, it must be known what functions 
are patterns in what functions.  

Dependencies: Perceptual hierarchy (for pattern recognition).  

Functions: Analogy could not exist without it.  

Structure: Analogy Processor  

Internal Structures: Must contain processors capable of applying the general analogy algorithm 
to many functions at once.  

Internal Processes: Searches for patterns according to general analogy algorithm, which requires 
numerous searches through structurally associative memory and also, in the case of modeling 
analogy, special-case global optimization in order to invert certain functions. May determine 
which types of analogy to use according to analogy.  

Dependencies: Structurally associative memory, global optimizer.  

Functions: Guides the perceptual hierarchy in its pattern recognition; guides the process of 
deduction.  

Structure: Induction Processor  

Internal Structures/Processes: Must be able to continually take in large sets of patterns and 
operate on them according to rapid, specialized approximation algorithms so as to construct a 
consistent model of the world. Parameters of these algorithms may be modified by parameter 
adaptor.  
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Dependencies: Perceptual hierarchy (for the patterns it takes as input), parameter adaptor.  

Functions: Aids the perceptual hierarchy in its recognition of patterns.  

Structure: Deduction Processor  

Internal Structures/Processes: Must be able to rapidly carry out chains of deductions according to 
hard-wired or otherwise specified rules. Which chains of deductions are executed is determined 
by an optimization routine whose initial guesses are determined by analogy. Which sets of rules 
are used may also be determined, to some extent, by parameter adaptation.  

Dependencies: Analogy processor, global optimizer, parameter adaptor.  

Functions: Guides the perceptual hierarchy.  

Structure: Parameter Adaptor  

Internal Structures/Processes: Executes a specific set of optimization problems, some involving 
pattern recognition, induction and analogy  

Dependencies: Induction processor, analogy processor, perceptual hierarchy global optimizer.  

Functions: Guides the motor control hierarchy and, to a lesser extent, the deduction, induction 
and analogy processors. Supplies the structurally associative memory with information.  

Structure: Global Optimizer  

Internal Structures/Processes: Minimizes and maximizes functions according to some widely 
applicable strategy. Adapts the particulars of its strategy to the nature of the function in question.  

Dependencies: Parameter Adaptor.  

Functions: Aids the parameter adaptor, the analogy processor and the deduction processor.  

Process: Consciousness  

Related Structures: Resides, apparently, fairly high up on the perceptual and motor control 
hierarchies; ventures into all regions of the mind but never too far from there (e.g. never too 
deeply into the structurally associative memory).  

Functions: According to the quantum theory of consciousness, consciousness has no 
deterministic effect on mental function; it is rather the means by which the mind participates in 
the creation of the world.  

Phenomenon: Emotion  
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Related Structures: It is hypothesized that emotion occurs when a processor in the motor control 
hierarchy which notably fails to reach its goal is also a part of consciousness.  

Functions: Emotion, like consciousness, appears to serve no deterministic role in mental 
function. It is, however, a necessary consequence of significant mental change in any conscious 
system.  

 

Appendix 2  

Automata Networks  

      

    The master network is a large, intricately interconnected network of programs. In this context, 
it is interesting to ask: what, in general, is known about the behavior of large interconnected 
networks of programs? The most important work in this area is Stuart Kauffmann's (1988) theory 
of random automata networks, which was initiated in the late 1960's. Kauffmann's method is 
very simple: construct networks of N random Boolean automata (i.e., programs), connect them to 
each other, and let them run for thousands of iterations. His results, however, are striking. Let K 
denote the number of other automata to which each automaton is connected.  

    One of Kauffman's first questions was: what is the long-term dynamical behavior of the 
networks? Since the networks are finite, for any given initial condition each one must eventually 
converge to a stable state or lock into a repetitive "limit cycle" (say, from state 1 to state 2 to 
state 3, and then back to state 1). The question is, how many different limit cycles are there, and 
how many distinct states are involved in each cycle? Where k=1, the networks operate in a 
largely independent, well-understood manner. Where k=N, the case of complete connectivity, the 
problem is also analytically soluble. For intermediate k, there is as yet no mathematical answer 
to Kauffmann's question -- but in every case, the numerical results are extremely clear. The total 
number of attractors (steady states or limit cycles) is roughly proportional to the number of 
automata in the network. But the average period of a cycle is exponential in the number of 
automata. Thus an arbitrary automata network, supplied an arbitrary initial condition, will almost 
certainly display "pseudo-chaotic" behavior -- it will eventually lock into a cycle of states that is 
so long as not to be humanly recognizable as a cycle.  

    This tells us little about the behavior of highly structured automata networks like the master 
network. But Kauffmann's more recent work (1988) tells us a bit more. He has set up a network 
of automata according to a certain scheme called the "NK model". Each automaton seeks to 
optimize its state according to certain criteria, and the criteria used by each automaton depend in 
a certain way upon the states of certain other automata. His model is very specific, but 
philosophically, it represents a very common situation: a network of programseach optimizing 
some function of an environment which is continually changed by the action of each program. 
His network is much simpler than the master network, but there are certain qualitative 
similarities: it is much closer to the master network than is a random automata network.  
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    Kauffman's main result regarding the NK model is that the interdependence of criteria makes a 
tremendous qualitative difference. If the criteria for each optimizing automaton were 
independent of the other automata, then as the optimization problems became more and more 
complex, the approximate optima found would be further and further from the true optimum. 
And this is true in the interdependent case, if the number of other automata to which each 
automaton is connected is increased proportionally to the complexity the problem. But if the 
complexity of the problem is increased while the connectivity is kept much smaller, the network 
tends to settle into a state in which each automaton can solve its problem relatively well.  

    I am being vague about the exact nature of Kauffmann's NK model because it is not relevant 
here. The model is tied to evolutionary biology rather than psychology or neuroscience. But 
similar results have been obtained from models of the immune system (Kauffmann et al, 1985); 
and it is only a matter of time until someone attempts a similar model of the simpler aspects of 
neurodynamics. What interests us here is Kauffman's general conclusion:  

        [I]t is a reasonable bet that low connectivity... is a sufficient and perhaps necessary feature 
in complex systems which must be perfected in the face of conflicting constraints... which are 
themselves complex adapting entities with many parts and processes which must mesh well to 
meet their external worlds.... [L]ow connectivity may be a critical feature of coadaptation of 
entities....  

The mind and brain are clearly systems of the sort Kauffmann describes.  

    The nAMP meets the criterion of low connectivity, because its structure is based on hierarchy, 
and inherently low-connectivity inter-neural-cluster connections. And, in general, the master 
network meets the criterion of low connectivity: in the STRAM each memory item is directly 
connected to only a small proportion of others; in the perceptual and motor hierarchies each 
processor is connected to only a few processors on the same or immediately adjacent levels; etc.  

    Admittedly, the observation that the master network has low connectivity is not particularly 
exciting or profound. If it did not have low connectivity, it could not feasibly be constructed. But 
it is enchanting to think that it might somehow be possible to use the general theory of automata 
networks to deduce more interesting properties of the network of programs that is the brain, or 
the network of programs that is the mind. This would be the exact opposite of the psychological 
approach to mind. Instead of explaining particular behaviors with highly specific ad hoc theories, 
one would be analyzing the overall structure and dynamics of intelligence from a perspective 
inclusive of all complex self-organizing systems: minds, brains, ecosystems, immune systems, 
bodies,....  

 

Appendix 3  

A Quick Review of Boolean Logic  
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    Leibniz was probably the first person to make a serious attempt to analyze thought 
mathematically. But Leibniz's pioneering efforts in this direction never inspired much 
enthusiasm. The project never really got off the ground until George Boole published Laws of 
Thought. Boole, like Leibniz before him, had the idea of formulating a mathematical theory 
which does for ideas what ordinary algebra does for numbers. And, unaware that Leibniz had 
worked on the problem, he began by duplicating Leibniz's efforts.  

    One might think that an algebra of thought would have to be something dramatically new. But 
in fact what Leibniz and Boole independently conceived was a synthesis of numerical algebra 
and ordinary language. Anthropologically, one might observe that, having committed themselves 
to expressing thoughts in terms of sequences of ink marks, they turned immediately to the two 
best-developed systems of sequences of ink marks. They arrived at the concept of a 
"proposition."  

PROPOSITIONS  

    A proposition is a simply a statement which is either true or false, and not both. For instance, 
it seems fairly clear that "George Boole wrote a book called "Laws of Thought" and "There is an 
Arab ruler who can play the bagpipes through his ear" are propositions. The first one is true and, 
as far as I know, the second is false. On the other hand, it also seems fairly clear that "Ione Skye 
is ten times prettier than Kim Basinger" and "Why are you reading this claptrap?" and 
"XXXXPPGttkeykeykey" are not propositions. The first is not really well-defined, and the 
second and third are not statements at all.  

    Strictly speaking, propositions are not sentences. A proposition is an abstraction. A sentence 
can represent a proposition. But two different sentences can represent the same proposition. For 
instance, "The U.S. is capitalist and Russia is socialist" represents the same proposition as 
"Russia is socialist and the U.S. is capitalist." The two sentences are not word-for-word identical, 
but they are equivalent in the sense that if either one is true, then theother is true; and if either 
one is false, then the other is false.  

    One way to deal with this situation is to introduce the strange notion of possible worlds . That 
is: consider the set of all universes that might possibly exist. Then a proposition may be 
considered as a sort of cosmic labeling device which assigns to each possible universe either the 
label "true," the label "false," or the label "meaningless" -- depending on whether, given the 
conditions of that universe, the proposition is true, false or meaningless. And it is clear that two 
statements which assign the same label to every universe correspond to the same proposition.  

    For example, to a universe in which the Bolshevik revolution failed and Russia became a 
democratic-capitalist constitutional monarchy like England, the proposition "The U.S. is 
capitalist and the Russia is socialist" would assign the label "false." In that universe, the 
proposition is false. To a universe in which a comet pulverized the earth in 10,000 B.C., the 
proposition "The U.S. is capitalist and Russia is socialist" would assign the label "meaningless" -
- in that universe, there is no such thing as the U.S. To our universe, of course, this proposition 
would assign the label "true". And it would also assign the label "true" to an infinity of alternate 
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possible universes -- for example, the universe which is exactly the same as ours except that the 
last word in this sentence is not "pomegranates."  

    There are certain propositions, such as "2+2=4," which we would like to say are true in any 
possible world. Philosophers refer to propositions of this sort as analytic propositions. More 
poetically, Saint Augustine called them "eternal verities." Those propositions which are true in 
some possible worlds but false in others are called contingent propositions. This distinction is 
interesting from a metaphysical point of view, and it is particularly relevant to the theory of mind 
if one takes a Nietzschean point of view. According to Nietzsche, true propositions are true only 
in that they are so extremely useful we cannot imagine giving them up. In this interpretation an 
analytic proposition is one which is useful to an intelligent entity in any environment 
whatsoever.     The possible worlds approach obviously rests upon shaky ground: after all, how 
do we decide which worlds are possible? We only live in one world, all the rest are just 
conjecture.      However, it is indisputable that each of us makes his way through the world by 
continually speculating as to how the future might turn out, and also how the past might have 
been. In each of our minds, there is an array of possible worlds. It turns out that the notion of 
possible worlds also arises in the analysis of consciousness.  

BOOLEAN ALGEBRA  

    The fundamental operations of numerical algebra are addition and multiplication. 
Correspondingly, Boole suggested, the fundamental operations of mental algebra must be "or" 
and "and" (disjunction and conjunction). In order to write these mental operations, Boole 
borrowed the notation of numericalalgebra. For instance, if we set  

        X = "George Boole wrote a book called Laws of Thought"  

                and  

        Y = "There is an Arab nation whose ruler can play the bagpipes through              his ear,"  

                then  

        X+Y = "Either George Boole wrote a book called Laws of Thought, or                 there is an 
Arab nation whose ruler can play the bagpipes                 through his ear."  

                and  

        XY = "George Boole wrote a book called Laws of Thought, and there                 is an Arab 
nation whose ruler can play the bagpipes through his                 ear."  

That is, in Boole's notation, "X and Y" is written XY, and "X or Y" is written X+Y.  

    Now, addition and multiplication are only two of the four operations of numerical algebra. 
What about subtraction and division? It turns out that there is no real counterpart to division in 
the realm of propositions. But subtraction is a different matter. Subtraction, Boole observed, is 
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analogous to negation. In his scheme, "minus" in the realm of numbers corresponded to "not" in 
the realm of thought. So, for example, where X is as defined above,  

        -X = "George Boole did not write a book called Laws of Thought"  

                and  

        -Y = "There is not an Arab nation whose ruler can play the bagpipes                 through his 
ear."  

    In numerical algebra, we have the rule X+0=X, for any X whatsoever. In the Boolean scheme, 
this rule can be translated into the algebra of thought by using the symbol "0" to denote the 
"empty proposition," the proposition which says nothing whatsoever. In symbols: 0=" ". The 
statement X+0 then means      "either X, or nothing whatsoever." And since "either X, or nothing 
whatsoever" is true whenever X is true, and false whenever X is false, it is equivalent to X. By 
similar reasoning, it follows that 0xX=0.  

    Boolean algebra has its own set of rules, similar but not equivalent to the rules of numerical 
algebra. For instance, in Boolean algebra -X + -Y = - XY. This is easy to see -- all it means is 
that "either x is false or y is false" is the same as "not both x and y are true." But the same rule 
obviously does not hold for numerical algebra. The complete list is as follows, where 0 is the 
"zero element" (the proposition which says nothing) and 1 is the "unit element" (the proposition 
which contains all other propositions):  

Commutative Laws:  

    X+Y=Y+X, XY=YX  

Distributive Laws:  

    X+(YZ)=(X+Y)(X+Z), X(Y+Z)=XY+XZ  

Identity Laws:  

    X+0=0, 1X=X  

Complement Laws:  

    A+(-A)=1, A(-A)=0  

    These rules form an interesting and important mathematical structure. However, it seems 
rather unlikely that they are the "laws of thought", for three reasons.  

    For one thing, they govern only deduction, whereas (as will be emphasized in the pages to 
follow) induction and analogy are equally important to mental process. I think it is a mistake to 
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assume, as is often done among computer scientists (Indurkhya, 1988), that induction and 
analogy may be understood as special cases of deduction.  

    Also, it is not at all clear that the mind actually deduces according to Boolean algebra. As 
pointed out in Chapter 8, there are serious contradictions between Boolean algebra and common 
sense logic. Contemporary logicians are seeking to remedy these with new axioms systems 
called "paraconsistent" and "relevance" logics, but the case is far from closed.  

    And, finally, it is not obvious that the brain gets along well with Boolean algebra. For 
instance, the distributive rule X(Y+Z) = XY + XZ seems very straightforward: all it says is that 
"X and either Y or Z" is the same as "either X and Y or X and Z". However, quantum theory 
indicates that when X, Y and Z represent propositions about physical situations, this is not 
always true. This simple observation, first made by Birkhoff and von Neumann (1932) has given 
rise to an entire new field: quantum logic (Mittelstaedt, 1978).  

LOGICAL PARADOXES  

    The first recorded logical paradox is that of Epiminides the Cretan, who proclaimed that "All 
Cretans are liars." If we believe him, then we should disbelieve him. But if we disbelieve him, 
then that is evidence that we shouldbelieve him.  

    Of course, this is a very rough paradox. After all, it could be that only Epiminides is a liar. 
What is generally referred to as Epiminides' Paradox is the refined version: "This sentence is 
false." Here there is no escape. If it is false, it is true; if it is true, it is false.  

    Berry's paradox is equally intriguing. What is the smallest number that cannot be described in 
English in one hundred characters or fewer? Whatever it is, is it not described by the phrase "the 
smallest number that cannot be described in English in one hundred characters or less"? This 
phrase is in English, and it uses fewer than one hundred characters. Therefore there is no number 
that cannot be described in English in one hundred characters or less. And yet this is not 
possible: there is an infinity of numbers, but only a finite number of English sentences of length 
less than one hundred.  

    And consider Russell's paradox. The barber in a certain town shaves all the residents except 
those who shave themselves. Who shaves the barber? In mathematical language: let R denote the 
set of all sets which do not contain themselves. Does R contain itself?  

    For centuries such conundrums were considered childish irrelevancies. But suddenly, around 
the turn of the century, they came to assume a tremendous importance for philosophers and 
mathematicians.  

    Mathematical logicians had succeeded in unifying all of mathematics into a small set of rules 
for manipulating a small set of symbols -- into a simple "formal system". Actually there was not 
just one formal system, there were many varieties. None of them was quite as simple as Boolean 
algebra, but most of them were similar to it in many respects. Through the efforts of Peano, 
Frege, Bertrand Russell, Alfred North Whitehead and others, everything from geometry to 
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calculus to number theory was expressed in terms of these elementary ideas. It appeared that 
mathematics had finally been made completely exact.  

    It is important to understand the full implications of this (apparent) achievement. First of all, it 
implied that every single mathematical statement could be expressed in this one formal language 
-- every statement about triangles, quadratic equations, calculus, nine-dimensional spheres, 
abstract topologies, whatever. And secondly, it indicated that every single true mathematical 
statement -- but no false mathematical statements -- could be arrived at by an application of the 
rules of this system. Therefore, doing mathematics was reduced to dealing with the symbols and 
the rules of this system. Or so it was thought at the time.  

    But before long this tremendous leap, the result of decades of ingenious research, was plagued 
with two serious difficulties -- both of which centered around simple conundrums like the 
Paradox of Epiminides. The second, and most damaging, of these difficulties was Godel's 
Theorem. The first was the Theory of Types.  

    The formalizations of mathematics that they had arrived at permitted certain forms of these 
paradoxes (Russell's paradox in particular) as valid mathematicalstatements. The problem was 
the following elementary fact: if a system of mathematical rules permits one of these paradoxes 
as valid, then for every X which is valid in it, -X is also valid.  

    To see this, assume for instance that Epiminides' Paradox is an admissible statement in a 
formal system S which incorporates Boolean algebra. Let G = "This sentence is false". Then G 
implies -G, and -G implies G. So if G is true in S, then so is -G. But given this fact, one can 
prove that any statement whatsoever is true. For take an arbitrary statement B. Then, since G is 
true, "G + B" is true. Hence "-G(G+B)" is true. But "-G(G+B)" implies B.  

    What good is a system of mathematics which cannot prove any statement true without also 
proving it false? Not much good, everyone realized -- you have to get rid of the paradoxes. 
Russell and Whitehead came up with one way of doing so: the theory of types. This is not 
essentially a mathematical idea: it has more to do with the general theory of reference. The 
theory of types can be applied to any language, formal or informal. It is nothing more or less than 
a way of organizing a set of statements.  

THE THEORY OF LOGICAL TYPES  

    In order to organize a set of statements according to the theory of types, one must first 
distinguish a set of "basic elements." These basic elements are supposed to be what the 
statements are fundamentally about. For instance, they might be numbers, or physical objects. 
These basic elements are assigned logical type 0.  

    Next, one must isolate a set of statements which are statements about the basic elements. 
These statements are assigned logical type 1. For instance, if the basic elements are physical 
objects, then statements like "the cat is on the mat" and "the log is in the bog" are of logical type 
1.  
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    Next, one isolates a set of statements which are statements about either basic elements or type 
1 statements, or both. These are assigned logical type 2. For instance, "You were lying when you 
said the cat was on the mat" is of logical type 2 -- it is a statement about a statement about 
physical objects.     Similarly, a statement of logical type 3 is a statement about entities of logical 
type 0,1 or 2. A statement of logical type 4 is a statement about entities of logical type 0, 1, 2 or 
3. And so on. What's the point of all this? Well, where does a statement like "This statement is 
false" fit in? It is a statement about itself. There is no way to reduce it to a statement about basic 
elements, or a statement about statements about basic elements, or a statement about statements 
about statements about basic elements.... The point is that an statement of logical type n cannot 
refer to another statement of logical type n. For instance, it cannot refer to itself.  

    If one requires that all mathematical statements have a logical type, then the paradoxes 
disappear. They are no longer well-formed mathematical statements. There is a problem with 
this, however: it also rules out innocuous self-referential statements like "This sentence is true." 
It is not paradoxical to say "this sentence is true", and there is no real reason to forbid such 
utterances.  

    It may seem that there is no great harm in getting rid of statements like "this sentence is true." 
After all, what good did saying "this sentence is true" ever do anyone? But there is no need to 
pursue this point, because the recent work of Paul Aczel has rendered it moot. He has given a 
formalization of mathematics which permits nonparadoxical self-reference without permitting 
paradoxical self-reference.  

    In fact, it turns out that not only is there no need to rule out "this sentence is true" and other 
innocuous self-references -- but there are some circumstances where "vicious" self-references 
like "this sentence is false" may come in handy. Certainly, we should forbid them to enter our 
mathematical deductions. But the work of G. Spencer-Brown (1970), Gregory Bateson (1980) 
and others has shown that, treated carefully, they can be useful.  

    The theory of types is indirectly relevant to the perceptual/motor hierarchy as described in 
Chapter 9, in which higher and higher levels may be understood to correspond to higher and 
higher logical types. 

 

 

 

 


